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In 1960, Paul A. Smith has asked the question:

If a finite group G acts smoothly on a sphere

with exactly two fixed points, is it true that the

tangent G-modules at the two fixed points are

isomorphic to each other?

Let G be a finite group. Two real G-modules

U and V are called Smith equivalent if

U ∼= Ta(S) and V ∼= Tb(S)

for a smooth action of G on a homotopy sphere

S with exactly two fixed points a and b.

In the real representation ring RO(G) of G, we

consider the subset Sm(G) consisting of the

differences U − V of real G-modules U and V

which are Smith equivalent.

As U − V = 0 in RO(G) if and only if U ∼= V

as real G-modules, the Smith question can be

restated as follows:

Is it true that Sm(G) = 0?



Atiyah and Bott: Sm(Zp) = 0 for any prime p.

Sanchez: Sm(Zpk) = 0 for any odd prime p

and any integer k ≥ 1.

Character theory: Sm(S3) = 0, Sm(Zn) = 0
for n = 2, 4, or 6.

Cappell and Shaneson, Petrie: Sm(Zn) 6= 0 for
n = 4q with q ≥ 2. In particular, Sm(Z8) 6= 0.

Petrie: Sm(G) 6= 0 for a finite abelian group G

of odd order, containing four or more noncyclic
Sylow subgroups.

Dovermann and Petrie: Sm(G) 6= 0 for large
families of cyclic groups G of odd order.

Masuda, Cho, Suh, Illman, and others obtained
many results related to the Smith question.

During the past 10 years, more answers were
given by Laitinen, PawaÃlowski, Solomon, Sumi,
Morimoto, Ju, Koto, and Qi.



Two real G-modules U and V , which are Smith

equivalent, are isomorphic when restricted to

any cyclic subgroup of G of order 2, 4, and of

odd prime power order.

In 1996, Laitinen suggested to study the Smith

isomorphic question under the condition that

for the corresponding action of G on S, the

fixed point set Sg is connected for any element

g ∈ G of order 2k for k ≥ 3, and thus U and V

are isomorphic when restricted to any (cyclic)

subgroup of G of prime power order.

For a finite group G not of prime power order,

let LSm(G) ⊆ Sm(G) consist of the differences

of Smith equivalent real G-modules U and V

such that the Laitinen condition holds.

Then LSm(G) ⊆ PO(G), the free abelian group

of the differences in RO(G) of real G-modules

U and V such that ResG
P (U) ∼= ResG

P (V ) for

any subgroup P of G of prime power order,

and dimUG = dimV G = 0.



Let rG be the number of real conjugacy classes
of elements in G not of prime power order.

For rG = 0 or 1, PO(G) = 0 and for rG ≥ 2,
rankPO(G) = rG − 1. In particular,

PO(G) 6= 0 if and only if rG ≥ 2.

Laitinen Conjecture. Let G be a finite Oliver
group. Then LSm(G) 6= 0 if and only if rG ≥ 2.

For any finite perfect group G, the conjecture
is true by Laitinen and PawaÃlowski (1999), and
moreover, LSm(G) = PO(G) by PawaÃlowski
and Solomon (2002).

As LSm(G) ⊆ PO(G), the condition rG ≥ 2 is
necessary in the Laitinen Conjecture.

Morimoto proves for the first time that this
condition is not sufficient for G = Aut(A6), by
computing that Sm(G) = 0 while rG = 2.

PawaÃlowski and Sumi obtain similar results for
a number of finite solvable Oliver groups G,
including the affine group G = Aff(2,3).



Let Gnil (resp. Gsol) be the smallest normal
subgroup of G such that G/Gnil is nilpotent
(resp. G/Gsol is solvable). Recall that

Gnil =
⋂
p

Op(G)

where Op(G) is the smallest normal subgroup
of G such that G/Op(G) is a p-group.

Definition. We say that a finite group G is
of nil-type (resp. sol-type), if there exist two
elements x and y of G such that the following
three conditions hold.

(1) xGnil = yGnil (resp. xGsol = yGsol).

(2) x and y are not real conjugate in G, and
the orders |x| and |y| are not prime powers
(and thus rG ≥ 2).

(3) x and y are in some gap subgroup of G, or
|x| and |y| are even and the involutions of
〈x〉 and 〈y〉 are conjugate in G.



A finite group G is called an Oliver group if
the following algebraic condition holds: there
does not exist a series of normal subgroups
P E H E G such that P is a p-group and G/H

is a q-group for some primes p and q, possibly
p = q, and H/P is cyclic.

According to Oliver, this algebraic condition is
necessary and sufficient for G to have a smooth
fixed point free action on a disk, or as proven
by Laitinen and Morimoto, to have a smooth
one fixed point action on a sphere.

For a finite group G, let P(G) be the family
of subgroups of G of prime power order, and
L(G) be the family of large subgroups of G,
where a subgroup L of G is called large in G if
Op(G) ≤ L for some prime p.

A finite group G is called a gap group if

P(G) ∩ L(G) = ∅
and there exists a real G-module W such that
dimWP > 2dimWH for all P < H ≤ G with
P ∈ P(G), and dimWL = 0 for all L ∈ L(G).



Examples of classes of finite Oliver groups

{simple 6∼= Zp} ⊂ {perfect} ⊂

{nonsolvable gap} ⊂

{nonsolvable} ⊂ {Oliver}

{abelian(3)} ⊂ {nilpotent(3)} ⊂

{solvable Oliver/N ∼= Zpq} ∪

{solvable Oliver odd order}

⊂ {solvable Oliver gap}

The index (3) above means that G has three

or more noncyclic Sylow subgroups, Moreover,

p and q are two distinct odd primes.



As PawaÃlowski and Solomon prove in 2002, for

a finite Oliver group G, LSm(G) 6= 0 when |G|
is odd, or when G has a quotient isomorphic

to Zpq for two distinct odd primes p and q.

Theorem A. Let G be a finite Oliver group of

nil type. Then LSm(G) 6= 0.

Theorem B. Except for G = Aut(A6) and

PΣL(2,27), a finite nonsolvable group G is of

sol-type (equiv. nil-type) if and only if rG ≥ 2.

Theorem C. Except for G = Aut(A6), the

following claim holds for any finite nonsolvable

group G: LSm(G) 6= 0 if and only if rG ≥ 2.

The claim of Theorem C has been proven by

Laitinen and PawaÃlowski for any finite perfect

group G, and by PawaÃlowski and Solomon for

any finite nonsolvable gap group G, except for

G = PΣL(2,27).



By our definition, PΣL(2,27) is a semi-direct

product of PSL(2,27) and Aut(F27).

The two nonsolvable groups G = Aut(A6) and

G = PΣL(2,27) are not of nil-type. In both

cases, rG = 2. Moreover, Aut(A6) is not a gap

group while PΣL(2,27) is a gap group.

As Morimoto shows, Sm(Aut(A6)) = 0 and

LSm(PΣL(2,27)) ∼= Z.

Hence, Theorems A and B yield Theorem C.

Remember, LSm(G) = 0 for rG = 0 or 1.

Later, we will give some ideas about the proofs

of Theorems A and B.

Now, we recall that by the work of Atiyah and

Bott from 1968, Sm(Zp) = 0 for any prime p,

and by the work of PawaÃlowski and Solomon

from 2002, the following theorem holds.



Theorem D. Let G be a finite simple group,

and assume that G is nonabelian, i.e. G 6∼= Zp.

Then Sm(G) = 0 if and only if rG = 0 or 1.

There are exactly fourteen finite nonabelian

simple groups G with rG = 0 or 1:

rG = 0: G = PSL(2, q) with q = 5,7,8,9,17,

PSL(3,4), Sz(8), Sz(32), and

rG = 1: PSL(2,11), PSL(2,13), PSL(3,3),

A7, M11, M22.

In these fourteen cases, it has been checked

that LSm(G) = Sm(G), and thus Sm(G) = 0.

Only four of the groups G above have elements

of order 8: PSL(2,17), PSL(3,3), M11, M22,

and in each of the case, dimW g > 0 for any

irreducible real G-module W and any element

g ∈ G of order 2k for k ≥ 3.



Theorem E. In either of the following cases,

Sm(G) = 0 if and only if rG = 0 or 1.

(1) G = PSL(n, q) or SL(n, q) for n ≥ 2 and

every prime power q.

(2) G = PSp(n, q) or Sp(n, q) for n ≥ 2, n even,

and every prime power q.

(3) G = An or Sn for n ≥ 2.

(4) G = PGL(n, q) or GL(n, q) for n ≥ 2 and

every prime power q.

(5) G = Aff(n, q) for n ≥ 2, and every prime

power q with (n, q) 6= (2,3).



In Theorem E, rG = 0 or 1 only for small values

of n and q, and in every case,

LSm(G) = Sm(G) = 0

by representation theory arguments.

According to PawaÃlowski and Sumi (2008), for

G = Aff(2,3), Sm(G) = 0 while rG = 2.

In Theorem E, the cases (1)–(3) were already

covered by PawaÃlowski and Solomon, using the

equivariant surgery under the gap condition to

prove that LSm(G) 6= 0 for rG ≥ 2.

To prove the same conclusion in the cases

(4) and (5), we need to apply the equivariant

surgery under the weak gap condition.



Let G be a finite group. For a real G-module
or a smooth G-manifold X, set

dX(P, H) = dimXP − 2dimXH

for any series P < H ≤ G of subgroups of G,
where P ∈ P(G). We say that X satisfies the
weak (resp. semi-weak) gap condition if the
conditions (1)–(4) (resp. (1) and (2)) hold.

(1) dX(P, H) ≥ 0 for every pair (P, H).

(2) If dX(P, H) = 0 for some pair (P, H), then
[H : P ] = 2 and XH is connected with
dimXH > dimXK+1 for every H < K ≤ G.

(3) If dX(P, H) = 0 for some pair (P, H), and
[H : P ] = 2, then XH can be oriented in
such a way that the map g : XH → XH is
orientation preserving for any g ∈ NG(H).

(4) If dX(P, H) = dX(P, H ′) = 0 for two pairs
(P, H) and (P, H ′), then 〈H, H ′〉 6∈ L(G).



Let PO(G)L consist of the differences U − V

in PO(G) such that dimUL = dimV L = 0 for
L ∈ L(G), the family of large subgroups of G.

Let PO(G)Lwg (resp. PO(G)Lsg) be defined by
the additional restriction that U and V satisfy
the weak (resp. semi-weak) gap condition.

S-Theorem. Let G be a finite Oliver group.
Then 2PO(G)Lsg ⊆ PO(G)Lwg ⊆ LSm(G).

R-Theorem. Let G be a finite Oliver group
of nil-type. Then PO(G)Lsg 6= 0.

Theorem A asserts that LSm(G) 6= 0 for any
finite Oliver group G of nil-type. This claim is
true by the two theorems posed above.

Remark. If G is a finite gap group, then

PO(G)Lsg = PO(G)Lwg = PO(G)L

and thus PO(G)L ⊆ LSm(G) for any finite
Oliver gap group G. If G is a perfect group,
then PO(G)L = PO(G) = LSm(G).



For H E G, PO(G, H) consist of the differences
U − V in PO(G) of real G-modules U and V
such that UH ∼= V H as real G/H-modules.

The rank of the free abelian group PO(G, H)
has been computed to the effect that

rankPO(G, H) = rG − rG/H

where rG/H is the number of real conjugacy
classes in G/H of cosets containing elements
g ∈ G not of prime power order. Therefore

PO(G, H) 6= 0 if and only if rG > rG/H .

For a finite Oliver group G, the following two
conclusions are true.

(1) If G is of nil-type, then rG > rG/Gnil.

(2) If G is a gap group and rG > rG/Gnil, then
G is of nil-type.

Corollary. A finite Oliver gap group G is of
nil-type if and only if rG > rG/Gnil.



Proposition. Except for G = Aut(A6) and

PΣL(2,27), the following three conditions are

equivalent for any finite nonsolvable group G.

(1) rG > rG/Gsol, i.e. PO(G, Gsol) 6= 0.

(2) rG ≥ 2.

(3) G is of sol-type.

The equivalence of (1) and (2) is obtained by

PawaÃlowski and Solomon. By using a similar

approach and some technical computations,

we show that (1) and (3) are also equivalent,

proving Theorem B asserting that (2) and (3)

are equivalent.


