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The Hopf theorem

We first review some well-known results on Hopf type

theorems.

Let M be an n-dimensional connected orientable closed

manifold, and Sn the n-dimensional sphere.

Let [M,Sn] denote the set of (free) homotopy classes of

continuous maps f : M → Sn.

The degree of f induces a map deg : [M,Sn] → Z. Then

the Hopf theorem or classification theorem of Hopf states

that

Theorem 1. The map deg : [M,Sn] → Z (n ≥ 1) is a

bijection.
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Proof of the Hopf theorem

The proof is divided into two steps.

(1) Application of obstruction theory.

The correspondence

γ : [M,Sn] ∋ [f ] 7→ γ(c, f) ∈ Hn(M ; Z) ∼= Z

is a bijection, where c is a constant map.

(2) Calculation of the obstruction class.

In this case γ(c, f) = f∗([Sn]), and f∗([Sn]) is nothing

but the degree of f .
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Equivariant version

Equivariant versions of the Hopf theorem and related topics

have been studied by Segal, Rubinsztein, Petrie, tom Dieck,

Balanov, Ferrario, and others.

We recall a simple example of the equivariant Hopf theorem.

Let C2 be a cyclic group of order 2, and Sn the n-sphere

with antipodal C2-action.

We want to know the C2-homotopy set [Sn, Sn]C2.
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Determination of [Sn, Sn]C2 (n ≥ 1)

The argument is almost same as in the nonequivariant case.

(1) Equivariant obstruction theory shows that the correspon-

dence

γC2 : [Sn, Sn]C2 ∋ [f ] → γC2(id, f) ∈ Hn
C2

(Sn;πn(Sn))

is a bijection.

(2) Identifying Hn
C2

(Sn; πn(Sn)) = Z, one can see that

γC2(id, f) = (deg f − 1)/2.
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An equivariant Hopf type theorem

Consequently we have a Hopf type theorem for C2-maps.

Theorem 2. By setting D([f ]) = (deg f − 1)/2, we have a

bijection

D : [Sn, Sn]C2 → Z.

Remark. deg : [Sn, Sn]C2 → Z is injective, and its image is

1 + 2Z, i.e., the degree of a C2-map is odd, and in particular

the forgetful map i : [Sn, Sn]C2 → [Sn, Sn] is injective.
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A more general result

More generally, one can determine [SV, SV ]G by equivariant

obstruction theory. Here V is a unitary G-representation and

SV denotes the unit sphere of V .

If V is large, e.g., V ⊃ CG, then the correspondence

d : [SV, SV ]G ∋ [f ] → (deg fH)(H) ∈
∏
(H)

Z

is injective, where fH : SV H → SV H, and the image of d is

characterized by the Burnside ring relations. In particular,

[SV, SV ]G ∼= A(G) (Burnside ring).
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Isovariant map

R. S. Palais introduced the notion of the isovariant map in

order to study a classification problem of G-spaces.

Definition. A (continuous) G-map f : X → Y between

G-spaces is called G-isovariant if f preserves the isotropy

subgroups, i.e., Gf(x) = Gx for all x ∈ X.

If a G-homotopy F : X × I → Y is G-isovariant, then it is

called a G-isovariant homotopy.

Let [X,Y ]isov
G denote the G-isovariant homotopy set, i.e., the

set of isovariant homotopy classes of G-isovariant maps from

X to Y .
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Assumption

We would like to determine [M,SW ]isov
G under some

assumptions.

We here assume the following.

• M is a connected, orientable, smooth closed G-manifold.

• The G-action on M is free and orientation-preserving.

• W is a faithful unitary G-representation.

• The Borsuk-Ulam inequality:

dimM + 1 ≤ dimSW − dimSW>1.

Here SW>1 =
∪

1 ̸=H≤G SWH, the singular set of SW . If

SW>1 = ∅, then we set dimSW>1 = −1.
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Comments on the Borsuk-Ulam inequality

The Borsuk-Ulam inequality is related to a Borsuk-Ulam type

theorem.

Theorem 3 (Borsuk-Ulam theorem). For any continuous

map f : Sn → Rn, there is x ∈ Sn such that f(x) = f(−x).

In an equivariant fashion, this is restated as follows.

Theorem 4. Assume that C2 acts antipodally on spheres. If

there is a C2-map f : Sm → Sn, then m ≤ n.
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A Borsuk-Ulam type theorem

The Borsuk-Ulam theorem has many generalizations. The

following is one of Borsuk-Ulam type theorems.

Theorem 5 (Isovariant Borsuk-Ulam theorem). Assume that

M is a mod |G| homology sphere with free G-action,

H∗(M ; Z/|G|) ∼= H∗(Sm; Z/|G|), m = dim M.

If there is a G-isovariant map f : M → SW , then

dimM + 1 ≤ dimSW − dimSW>1.
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Existence of an isovariant map

Set

d = dim SW − dimSW>1.

Remark. Since W is faithful and unitary, d is even and ≥ 2.

By the isovariant Borsuk-Ulam theorem, if M is a mod |G|
homology sphere and dimM > d − 1, then there is no

isovariant map from M to SW , i.e., [M,SW ]isov
G is empty.

On the other hand,

Theorem 6. Let M be a closed free G-manifold.

If dimM ≤ d− 1, then there is a G-isovariant map from M

to SW , i.e., [M,SW ]isov
G is not empty.
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Outline of proof

Set

SWfree = SW \ SW>1.

Since G acts freely on M , one can identify [M,SW ]isov
G

with [M,SWfree]G. So one may consider G-maps f : M →
SWfree.

Lemma 7. SWfree is (d − 2)-connected.

This lemma shows that a G-map ϕ : G × Sk−1 → SWfree

can be extended to ϕ̃ : G×Dk → SWfree for k ≤ d−1. One

can see the existence of a G-map f : M → SWfree using a

G-CW decomposition of M .
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Isovariant homotopy classes: dimM < d − 1

Similarly we have the following.

Theorem 8. If dimM < d − 1, then [M,SW ]isov
G = {∗}.

Namely all isovariant maps f : M → SW are isovariantly

homotopic each other.

Outline of Proof. It suffices to show that any two G-maps

f , g : M → SWfree are G-homotopic.

Since dim M + 1 ≤ d − 1 and SWfree is (d − 2)-connected,

the G-map F0 := f
∐

g : M × {0, 1} → SWfree can be

extended to a G-homotopy F : M × I → SWfree.
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Isovariant homotopy classes: dimM = d − 1

Hereafter we assume that

dimM = d − 1 (d = dim SW − dimSW>1).

In order to determine [M,SW ]isov
G , we introduce the notion

of the multidegree. Set

A = {H ∈ Iso (W ) | dimSWH = dim SW>1},

where Iso (W ) is the set of isotropy subgroups of W .

Let A/G denote the set of conjugacy classes of subgroups in

A, i.e.,

A/G = {(H) |H ∈ A}.
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Isomorphisms

Using the Mayer-Vietoris exact sequence, we have

Hd−1(SWfree; Z) ∼=
⊕
H∈A

Hd−1(S(WH)⊥; Z) ∼=
⊕
H∈A

Z,

where (WH)⊥ is the orthogonal complement of WH in W .

Since gS(WH)⊥ = S(W gHg−1
)⊥ for g ∈ G, we have

Lemma 9. There is a ZG-isomorphism

Ψ : Hd−1(SWfree; Z) →
⊕

(H)∈A/G

Z[G/NH],

where NH is the normalizer of H in G.
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Hence we have

ΨG : Hd−1(SWfree; Z)G ∼=
⊕

(H)∈A/G

Z[G/NH]G.

Since

Z[G/NH]G = Z · σH
∼= Z,

where σH :=
∑

ā∈G/NH ā, we have an isomorphism

Φ : Hd−1(SWfree; Z)G →
⊕

(H)∈A/G

Z.
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Multidegree

Let f : M → SW be a G-isovariant map (or equivalently

f : M → SWfree be a G-map). Then f induces a ZG-

homomorphism f∗ : Hd−1(M ; Z) → Hd−1(SWfree; Z).

Since the G-action on M is orientation-preserving, the

induced G-action on Hd−1(M ; Z) ∼= Z is trivial, and so

f∗([M ]) ∈ Hd−1(SWfree; Z)G, where [M ] is the fundamental

class of M .

Definition. The multidegree of f is defined by

mDeg f = Φ(f∗([M ])) ∈
⊕

(H)∈A/G

Z.

The multidegree is an isovariant invariant.
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Isovariant Hopf theorem

Theorem 10. Under the assumption.

(1) mDeg : [M,SW ]isovG →
⊕

(H)∈A/G Z is injective.

(2) For any two G-isovariant maps f , g : M → SW ,

mDeg f − mDeg g ∈
⊕

(H)∈A/G

|NH|Z.

(3) Fix a G-isovariant map f0 : M → SW . For any a ∈⊕
(H)∈A/G |NH|Z, there exists a G-isovariant map f :

M → SW such that

mDeg f − mDeg f0 = a.
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Isovariant Hopf theorem

Let dH(f) be the (H)-component of d(f), i.e., mDeg f =
(dH(f))(H) ∈

⊕
(H)∈A/G Z. We define

Df0 (f) =
(

1
|NH|

(dH(f) − dH(f0))
)

(H)

∈
⊕

(H)∈A/G

Z,

where f0 is a fixed isovariant map. Then we have

Corollary 11. The map Df0 : [M,SW ]isovG →
⊕

(H)∈A/G Z
is a bijection.

Remark. When the action on SW is not free, then

[M,SW ]G = {∗}, and so the forgetful map [M,SW ]isov
G →

[M,SW ]G is surjective.
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Example: Cyclic case

Let Cpq be a cyclic group of order pq, where p, q are distinct

primes. Let g be a generator of Cpq.

Let Uk (= C) be the Cpq-representation with the action

gz = zk.

Set M = SU1 and SW = S(Up ⊕ Uq).

In this case, d = 2 and A = A/G = {Cp, Cq}. So we have

[M,SW ]isov
Cp,q

∼= Z ⊕ Z.
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More concretely, a Cpq-isovariant map

fα,β : SU1 → S(Up ⊕ Uq), α, β ∈ Z,

is defined by

fα,β(z) =
1√
2
(z(1+αq)p, z(1+βp)q).

These fα,β are representatives of isovariant homotopy classes.

In fact one can see that

Df0,0([fα,β]) = (β, α).
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Example: Metacyclic case

Let Zp,q be the metacyclic group of order pq, where p, q are

odd primes such that q|p − 1, i.e., Zp,q has

1 → Cp → Zp,q → Cq → 1 (split exact).

Petrie first proved that Zp,q can act smoothly (but not

linearly) and freely on some high-dimensional sphere, and

finally Madsen,Thomas and Wall showed that Zp,q can act

smoothly and freely on S2q−1. Let Σ be such a free Zp,q-

sphere of dimension 2q − 1.
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Zp,q has a complex q-dimensional representation R and a

nontrivial 1-dimensional representation T .

We set Wk = R ⊕ kT , k ≥ 1.

In this case d = 2q and so dimΣ = d − 1.

Moreover

A/G =

{
{(Cp), (Cq)} if k = 1

{(Cp)} if k > 1.

Hence we have

[Σ, SWk]isov
Zp,q

∼=

{
Z ⊕ Z if k = 1

Z if k > 1.
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Proof — Equivariant cohomology

We give the outline of proof of the isovariant Hopf theorem

(Theorem 10).

Let M be a free G-manifold and C∗(M) its cellular chain

complex. Note that Cn(M) is a free ZG-module.

Let π be a ZG-module, and define the equivariant cochain

complex C∗
G(M ;π) = HomZG(C∗(M); π).

Definition. Hn
G(M ;π) = Hn(C∗

G(M ;π)).

Remark. Hn
G(M ;π) ∼= Hn(M/G; {π}), where {π} denotes

the local coefficients induced from the ZG-module π.
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Proof — From equivariant obstruction theory

Let f , g : M → SWfree be G-maps and let γG(f, g) denote

the equivariant obstruction class to the existence of a G-

homotopy between f and g.

Let πd−1 = πd−1(SWfree). Since SWfree is (d−2)-connected

and dimM = d − 1, we have

Proposition 12. The correspondence [f ] 7→ γG(f0, f) gives

a bijection γG : [M,SWfree]G → Hd−1
G (M ; πd−1), where f0

is a fixed isovariant map.

Remark. When d = 2, using the Borsuk-Ulam inequality,

one can see that G is cyclic and π1 is abelian.
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Proof — Computation

Let

ε : Hd−1
G (M ; πd−1) → Hd−1(M ; πd−1)

be the forgetful map.

Proposition 13.

(1) Hd−1
G (M ;πd−1) ∼=

⊕
(H)∈A/G Z.

(2) Hd−1(M ;πd−1) ∼=G

⊕
(H)∈A/G Z[G/NH].

(3) ε is injective.

(4) Im ε =
⊕

(H)∈A/G |NH|Z[G/NH]G ∼=
⊕

(H)∈A/G |NH|Z.
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Proof — Cohomological description of the multidegree

Proposition 14.

(1) πd−1(SWfree) ∼=G

⊕
(H)∈A/G Z[G/NH], and

πd−1(SWfree)G ∼=
⊕

(H)∈A/G Z.

(2) Under the above identification, we have

mDeg f − mDeg g = 〈ε(γG(f, g)), [M ]〉,

where 〈− , [M ]〉 : Hd−1(M ;πd−1) → πd−1(SWfree) is the

evaluation map, which is a ZG-isomorphism.
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Proof of the isovariant Hopf theorem

(1) mDeg : [M,SW ]isovG →
⊕

(H)∈A/G Z is injective.

Since

mDeg f − mDeg g = 〈ε(γG(f, g)), [M ]〉,

if mDeg f = mDeg g, then ε(γG(f, g)) = 0. Since ε is

injective, we have γG(f, g) = 0.

This implies that f and g are isovariantly homotopic. Hence

mDeg is injective.
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(2) For any two G-isovariant maps f , g : M → SW ,

mDeg f − mDeg g ∈
⊕

(H)∈A/G

|NH|Z.

(3) Fix a G-isovariant map f0 : M → SW . For any a ∈⊕
(H)∈A/G |NH|Z, there exists a G-isovariant map f :

M → SW such that

mDeg f − mDeg f0 = a.

Using the fact Im ε ∼=
⊕

(H)∈A/G |NH|Z, one can see (2)

and (3).
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