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1. A brief description of

repeated games with incomplete information

We consider infinitely repeated two-person, non-
zero-sum games of incomplete information on one
side on one side, which were introduced by Aumann,
Mashler and Stearns in late 1960’s. Further basic
results were obtained by S.Sorin in 1983.

There is a finite set K of states of nature and
two players A and B.

Nature chooses a state k ∈ K according to
a commonly known probability distribution on K.
The first player, but not the second player, is in-
formed of nature’s choice. The chosen state remains
constant throughout the play.

The finite sets of moves for the players, I for A
and J for B, are the same for all states.

The chosen state k, along with the moves of the
players, determines the stage payoffs, during the play
the second player learns nothing about his payoff, as
this could give him information about the state of
nature.
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Let m := |I| be the number of the first player’s
actions and n := |J | the number of the second
player’s actions.

For every state k ∈ K there are two m × n
matrices Ak and Bk. The i, j entry of Ak is the
payoff that the first player receives if the state of
nature is k, the first player chooses the action i and
the second player chooses the actions j. Likewise the
i, j entry of Bk is the payoff that the second player
receives if the state of nature is k, the first player
chooses the action i and the second player chooses
the actions j.

An equilibrium of the game is a pair of strategies
such that

• for every state k ∈ K there are limits ak and
bk as the number n of stages go to infinity for the
averages summed over the stages up to the stage
n of the expected payoffs of Players One and Two,
respectively, and

• neither player can obtain a higher limit superior
as n goes to infinity for his average payoff summed
over the stages up to n (and determined by the initial
probability distribution on K) by choosing a differ-
ent strategy.
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More detailed descriptions of equilibria for the
games under consideration can be found in [A–M],
[So], [Si], [R] and [S–S–T 2].

We divide the problem of equilibrium existence
for these games into four levels of difficulty.

• The first level of difficulty concerns the conven-
tional game (of standard information): after each
stage of play both players are informed of each oth-
ers’ moves and this is the only information the play-
ers receive additional to what they knew when the
play began. Equilibrium existence for this level was
proven by S. Sorin (1983) in the case |K| ≤ 3, and
in general case in [S–S–T 1], 1995.

• For the second level of difficulty both players do
not know exactly what the other player has done,
but at least the perception of the second player is
independent of the state. Equilibrium existence for
the second level was proven by J. Renault, [R], 2000.

• For the third level of difficulty the perception of
the second player could be dependent on the state,
however the first player has at least some channel
with which she can communicate messages that re-
veal nothing about the state. Equilibrium existence
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for the third level was established in [S–S–T 2], 2002.
The methods used to prove equilibrium exis-

tence for the third level, were applied in [S–S–T 3],
2008, to economic situations broader than that of re-
peated games of incomplete information, in particu-
lar to principal-agent situations. A typical principal-
agent situation is that of the relationship between
the owner of a firm (the principal) and its manager
(the agent). The owner employs the manager, both
are interested in the success of the firm, but their in-
terests do not coincide and the agent has information
on the firm that the owner does not have.

• For the fourth level of difficulty there are no as-
sumptions whatsoever concerning the perception of
the second player. The question of equilibrium ex-
istence for the fourth level remains open. A strat-
egy of a proof of equilibrium existence is described
in [S], 2003. It requires a parametrized version of
Borsuk–Ulam theorem obtained in [S–S–S–T], 2007,
and further advances which still have to be worked
out.
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2. How do the topological results

enter into the play

For the Game with standard information, Au-
mann, Maschler and Stearns devised strategies (one
for each players) which lead to an equilibrium, pro-
vided such strategies pairs existed.

They proposed that both players agreed to play
at each stage of the game in a certain prescribed
manner, known to both of them.

If any of the players violated this agreement,
the other one used a punishing strategy that kept
the payoff relatively low.

For all of this to work a complicated system of
inequalities and equalities needed to be solvable.
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It turns out that a solution to this system would
exist if we were able to attack the following problem:

Let ∆ be an n-simplex in Rn, and let a point
p0 ∈ ∆ and real functions a and bv, v ∈ Rn, on
∆ be given, with the functions bv being convex and
continuously depending on v. Let r : Rn → ∆ be
the nearest point retraction.

Establish conditions under which it is true that

• either bp0 can be separated from a by an affine
functional, or

• there exits a finite set P0 ⊂ Rn and an affine
functional Φ in Rn such that p0 ∈ conv (r(P0)) and
a ≤ Φ|∆ ≤ bp, for all p ∈ P0.

This geometric problem leads to a setup con-
cerning set–valued functions.
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3. Some results on correspondences

By a correspondence F : X → Y we mean a
subset of X × Y such that its projection to X is a
proper mapping–that is, it is closed and has compact
point-inverses.

For x ∈ X, y ∈ Y we consider the sets

F (x) := {y′ ∈ Y : (x, y′) ∈ F} ,
F−1(y) := {x′ ∈ X : (x′, y) ∈ F}

In general, we do not assume that the set F (x)
be non–empty for all x ∈ X.

The set domF := {x ∈ X : F (x) 6= ∅} is called
the domain of F , and similarly we define F (U) =⋃
u∈U F (u), the image under F of a subset U of X.

By the restriction F |S of F to a set S ⊂ X we
mean the correspondence F ∩ (S × Y ).

We say that F is acyclic–valued if, for each x ∈
X, F (x) is non–empty and has trivial reduced Čech
homologies with coefficients in Z/2.
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Let (W,∂W ) be a relative k-manifold and F :
W → Y a correspondence. We say F has property
S (spanning property) for (W,∂W ) if the homomor-
phism

Hk(F, F|∂W ; Z/2)→ Hk(W,∂W ; Z/2)

of Čech homology groups induced by the projection
to W is an epimorphism. Note that in this case
dom(F ) = W .

We say F : Rn → Y has property S for an open
set U ⊂ Rn if F|Ū has property S for (Ū , ∂U).

In our setting, X is often going to be a subset
of an Euclidean space. Whenever this is the case we
may define the following correspondence:

cF :=
⋃

y∈Y
conv (F−1(y))× {y}

We say that cF is a level–wise convexification of F .
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Theorem 1. Let U be an open bounded subset of
Rn, and let F be an acyclic-valued correspondence
defined on the closure of U . If dimF (U) < n, then
c(F|∂U ) has property S for U and, consequently, U ⊂
dom c(F|∂U ).

Thus each point p0 ∈ U is in the domain of
c(F|∂U ), i.e. there exists a finite set P0 ⊂ ∂U such
that p0 ∈ conv (P0) and

⋂
p∈P0

F (p) 6= ∅.

• Application to games. Theorem 1 allows to give a
rather satisfactory answer to the problem on sepa-
ration of functions. We do not formulate the suffi-
cient condition obtained, the essence of which is that
it forces the image of the arising correspondence to
have dimension smaller than n and thus makes The-
orem 1 applicable. In this way the existence of an
equilibrium in the first level of difficulty is estab-
lished (see [S–S–T 1]).

Applying Theorem 1 and some other proper-
ties of correspondences, we prove the following two
theorems, Theorem 2 and Theorem 3, needed in the
proof of existence of an equilibrium in the third level
of difficulty (see [S–S–T 2] and [S–S–T 3]).
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For applications to game theory, “saturated”
correspondences into cubes turn out to be special:

If F : ∆(L)→Y is a correspondence and Y ⊂
RL, where L is a finite set, then by F+ we denote
the correspondence ∆(L)→Y defined by

F+(p) := {y ∈ Y : ∃x ∈ F (p) such that xl ≤ yl

for all l ∈ L and xl = yl if pl > 0}.
We call F+ the Y -saturation of F and say that F is
saturated if F = F+. Below, Y = IL is a cube, with
I a non-trivial compact segment in R.

Theorem 2. Let C be a family of non-void subsets
of a finite set K such that

⋃
C = K. Suppose fur-

ther there are given a point p ∈ ∆(K) and, for every
L ∈ C, a saturated correspondence FL : ∆(L)→IL
with property S for ∆(L) and a closed convex sub-
set UL of IK containing the point (b, b, . . . , b). Then
there exist a point y ∈ ⋂L∈CUL ⊂ IK and finitely
many sets L1, . . . , Ls ∈ C and points pi ∈ ∆(Li) ⊂
∆(K), i = 1, . . . , s, such that the following condi-
tions hold:

p ∈ conv {p1, . . . , ps} and yLi ∈ FLi(pi) for each i .
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To warrant property S of the correspondences
FL we depend on the following

Theorem 3. Let F : ∆ → IL be a convex-valued
correspondence and a : ∆ → I be a lower semi-
continuous function such that

a(q) ≤ sup{y · q : y ∈ F (p)} for all p, q ∈ ∆.

With F+ denoting the IL–saturation of F , the corre-
spondence F̃ : ∆→RL defined by the formula below
has property S for ∆:

F̃ (p) := {y ∈ c(F+)(p) : y · q ≥ a(q) for all q ∈ ∆}.

Above, convex–valued means that each set F (p),
p ∈ ∆, is non–empty and convex,
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4. Relation to antipodal–type theorems.

From Theorem 1 applied to a single–valued
function it follows that when x0 is a point of a com-
pact set C ⊂ Rn and f : C → Y is a mapping into a
space of dimension n− 1, then in the boundary of C
there exists a set C0 mapped by f into a singleton
and containing x0 in its convex hull.

By Caratheodory’s theorem one can always re-
place C0 by its subset consisting of ≤ n + 1 points.
In general, this number cannot be lowered.

Example. Let f be the natural simplicial map of
the barycentric subdivision of an n-simplex ∆ onto
the join of the barycenter of ∆ and of the (n − 2)-
skeleton of ∆. Then the center of ∆ cannot be rep-
resented as a convex combination of n points that
have a common image.

However, in the special case where Y is an
(n − 1)–manifold, a generalization of Borsuk-Ulam
theorem given by J. Olȩdzki implies that C0 may be
taken to consist of 2 points. (Special cases of this
were established by K. Sieklucki and K. D. Joshi.
The well–known Borsuk–Ulam theorem deals with
the case when C is a ball.)
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It would be interesting to know less restrictive
assumptions under which n + 1 above could be re-
placed by a smaller number.

This is related also to estimating the k–Urysohn
diameter of a compact set C, defined as the infimum
of sup{diam(f−1(y) : y ∈ f(C)} where f runs over
all mappings of C to k–dimensional spaces.

It follows easily from the above, that the (n−1)–
diameter of a ball in Rn equals to the “usual” di-
ameter of a regular simplex inscribed into this ball’s
boundary (apparently this has already been known).
When k ∈ (n/2, n−2] the k-Urysohn diameter of an
n–ball remains unknown.
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5. A parameterized Borsuk-Ulam theorem

Let W be an k-dimensional compact connected
manifold with boundary ∂W (possibly ∂W = ∅) and
let

F ⊂W × Sm ×Rm

be compact.

We associate to F its Borsuk-Ulam correspon-
dence G ⊂W ×Rm defined by

G := {(w, v) : ∃u ∈ Sm : (w, u, v), (w,−u, v) ∈ F} .
Note that, if W = {pt} and F is the graph of

a continuous function Sm → Rm, then the Borsuk-
Ulam theorem states that G is non-empty, whence
the chosen name.

Theorem 4. Suppose that the correspondence F :
W × Sm → Rm has property S for (W,∂W ) × Sm.
Then the correspondence G : W → Rm has property
S for (W,∂W ). Consequently, G is mapped onto W
by the projection W ×Rm →W .

Notation. Below, by H we denote the Čech homol-
ogy functor with coefficients in Z/2.
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An equivalent statement:

Suppose that the homomorphism

p∗ : Hk+m(F, F|∂W×Sm)→ Hk+m((W,∂W )× Sm) ,

where p : (F, F|∂W×Sm)→ (W,∂W )×Sm is the map
induced by the projection W×Sm×Rm →W×Sm,
is an epimorphism. Then

q∗ : Hk(G,G|∂W )→ Hk(W,∂W ) ,

where q : (G,G|∂W )→ (W,∂W )) is the map induced
by the projection W ×Rm →W , is an epimorphism
as well.

Remark. Theorem 4 is the parametrized Borsuk-
Ulam theorem. Loosely speaking, it asserts the fol-
lowing: if one has a family of Borsuk-Ulam problems
parametrized by a manifold W which depend “con-
tinuously” on the points in W , then the solutions to
the Borsuk-Ulam problem can be chosen to depend
“continuously” on the points in W as well.

“Continuity” here is measured by the fact that
one can span a Čech-homology class through the set
which projects down to the fundamental class of W .
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Sketch of the proof of Theorem 4

Let [(W,∂W ) × Sm] and [W,∂W ] be funda-
mental classes of the manifolds (W,∂W ) × Sm and
(W,∂W ), respectively.

Note that to prove the theorem it suffices to
define a map

Hk+m(F, F|∂W×Sm))→ Hk(G,G|∂W ), f 7→ gf

such that q∗(gf ) = [(W,∂W )] provided p∗(f) =
[(W,∂W )× Sm].

To define this map, we need to establish a rela-
tive squaring construction in Čech homology.

Let (X,A) be a pair of compacta. On X×X, we
have the involution τ with τ(x, y) = (y, x). Consider
the quotient pair

SP (X,A) := ((X ×X)/τ, (X ×A∪A×X ∪D)/τ) ,

where D := {(x, x) | x ∈ X} is the diagonal.

Then there is a natural homomorphism, called
invariant homology squaring

Sq : Hk(X,A)→ H2k(SP (X,A)) ,

with the following properties:
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(1) Let M be a manifold with the boundary
∂M and let [M,∂M ] ∈ HdimM (M,∂M) be the
fundamental class of (M,∂M). Then the funda-
mental class [SP (M,∂M)] of the relative manifold
SP (M,∂M) is equal to Sq[M,∂M ].

(2) Let (X,A) and (Y,B) be pairs of compacta
such that (X,A) ⊂ (Y,B). Then

Sq(i∗(x)) = j∗(Sq(x))

for each x ∈ H∗(X,A), where i : (X,A) ↪→ (Y,B)
and j : SP (X,A) ↪→ SP (Y,B) denote the inclu-
sions.

(3) Let (X,A) and (Y,B) be arbitrary pairs
of compact subsets of a manifold M , and let x ∈
Hk(X,A) and y ∈ Hl(Y,B). Then

Sq(x • y) = Sq(x) • Sq(y),

where • denotes the intersection of homology classes.
(Let us recall, that

x • y ∈ Hk+l−dimM (X ∩ Y,X ∩B ∪A ∩ Y ) .)
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Using the invariant homology squaring, we de-
scribe for each f ∈ Hk+m(F, F|∂W×Sm) the required
element gf ∈ Hk(G,G|∂W ) as follows.

We define the “antidiagonal”

∆ := {[w, u, v, w,−u, v]} ⊂ SP (W × Sm ×Rm) .

Observe that

∆ ∼= W ×RPm ×Rm .

By [∆, ∂∆] ∈ H3k+2m(∆, ∂∆) we denote the
fundamental class of the manifold (∆, ∂∆) (we use
locally finite homology).

Let (F ′, ∂F ′) := SP (F, F|∂W×Sm) ∩ (∆, ∂∆) .
We define

gf := (πG)∗ (Sq(f) • [∆, ∂∆]) ,

where πG : (F ′, ∂F ′)→ (G,G|∂W ) is induced by the
projection ∆ ∼= W ×RPm ×Rm →W ×Rm.
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One can observe that

q∗(gf ) = (πW ◦ jF ′)∗(Sq(f) • [∆, ∂∆]) ,

where jF ′ : (F ′, ∂F ′)→ (∆, ∂∆) is the inclusion, and
πW : (∆, ∂∆) ∼= (W,∂W )×RPm ×Rm → (W,∂W )
denotes the projection.

Thus, to conclude the proof it suffice to show
that

(a) (πW ◦ jF ′)∗(Sq(f) • [∆, ∂∆]) = [W,∂W ]

provided p∗(f) = [(W,∂W )× Sm].

To prove (a), we first show that

(b) Sq(f) = [E, ∂E] in H2(k+m)(Ŵ , ∂̂W ),

where (Ŵ , ∂̂W ) := SP ((W,∂W ) × Sm ×Rm), E is
the subset of Ŵ consisting of all points

[w, (u, um+1), u, w′, (u′, u′m+1), u′]

such that um+1, u
′
m+1 ∈ Sm, and ∂E := E ∩ ∂̂W .
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Notation. If (Xi, Ai) ⊂ (Y,B), i = 1, 2, and xi ∈
H∗(Xi, Ai), then we say that x1 and x2 are equal in
H∗(Y,B) if there images under the homeomorphisms
of homology groups induced by the corresponding
inclusions are equal.

By (b), in Hk(∆, ∂∆) we have

Sq(f) • [∆, ∂∆] = [E, ∂E] • [∆, ∂∆] .

Since E and ∆ intersect transversally it follows that

[E, ∂E] • [∆, ∂∆] = [E ∩∆, ∂E ∩ ∂∆] .

Next, because πW |(E ∩∆, ∂E ∩∂∆) is a homeomor-
phism onto (W,∂W ), it follows that

(πw ◦ jE∩∆)∗([E ∩∆, ∂E ∩ ∂∆]) = [W,∂W ] ,

where jE∩∆ : (E ∩ ∆, ∂E ∩ ∂∆) ↪→ (∆, ∂∆) is the
inclusion.

Consequently,

(πw ◦ jF ′)∗(Sq(f) • [∆, ∂∆]) = [W,∂W ]

since in Hk(∆, ∂∆) we have

Sq(f) • [∆, ∂∆] = [E ∩∆, ∂E ∩ ∂∆] .

This completes the proof of Theorem 4.
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