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Abstract. I define a regular homotopy invariant of non-null-homotopic generic regular closed curves

on complete euclidean/hyperbolic surfaces, roughly by algebraically counting the essential double

points. This is equal to the winding number I introduced in an earlier paper [7] by a geometric

method, so it can be used, together with the free homotopy class of the curve, to give a complete

regular homotopy classification.

1. Introduction

In [7], I introduced a certain winding number of regular closed curves on aspherical surfaces

with a good geometric structure, and showed that two homotopic regular closed curves are regularly

homotopic if and only if they have the same winding number. In this paper, we assume that the surface

has a complete euclidean or hyperbolic structure, and give a Whitney-type formula for this winding

number when the curve is non-null-homotopic and generic in the sense that the self-intersection points

are all transversal double points.

Please note that the term ‘winding number’ is used in various meanings in the literature. J. Roe’s

textbook [4], for example, defines the ‘winding number’ of a planar closed curve to be the number of

times the curve winds around a given point, and the term ‘rotation number’ is used for the number of

times the direction map of a regular closed curve winds around the origin 0. This ‘rotation number’

is also called the ‘Whitney index’, the ‘tangent winding number’, and, unfortunately, the ‘winding

number’. In this article, a ‘winding number’ always mean either the ‘Whitney index’ or its general-

ization. Please also note that there are various generalizations of the Whitney index; for example, see

the articles [3] by Reinhart and [1] by Chillingworth. My generalization is different from theirs, and

is closer to the generalization by Kobayashi [2].

To express a closed curve on a surafce M , I used a parametric representation γ : [a, b]→M in [7],

and will be mainly using a map γ : S1 → M from the unit circle in this paper, by technical reasons.

Please forgive my abuse of notation. We assume that the base point of γ : S1 →M is γ((1, 0)).

We first look at the case when the curve is null-homotopic. If a curve γ is null-homotopic, then it

lifts to a regular closed curve γ̃ on the universal cover M̃ of the surface M . We denote the universal

covering map of M by pM . A regular homotopy of γ induces a regular homotopy of γ̃, and vice versa.

So the regular homotopy classification of null-homotopic regular closed curves is the same as that of

regular closed curves on the universal cover. If M is a complete euclidean or hyperbolic surface, then

M̃ is equal to the euclidean plane E2 or the hyperbolic plane H2 (more precisely, the whole plane or

the upper half plane/the open unit disk). A regular homotopy in E2 of curves in M̃ can be deformed

into a regular homotopy in M̃ without changing the curves; so, the classical Whitney index [6] for the

euclidean plane can be used for the classification on M̃ . If M is orientable, then all the lifts of γ have
1
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the same Whitney index; on the other hand, if M is non-orientable, then either all of them have the

trivial Whitney index or the lifts are divided into two types of lifts whose Whitney indices have the

same absolute value and the opposite signs. So, given a null-homotopic regular closed curve γ in M ,

we defined its winding number W (γ) in [7] by:

W (γ) =




W (γ̃) ∈ Z if M is orientable,

|W (γ̃)| ∈ Z+ if M is non-orientable,

where γ̃ is any lift of γ and W (γ̃) is its classical Whitney index of γ̃. The classical Whitney’s formula

[6] expresses W (γ̃) in terms of the signs of the double points, with respect to a suitably chosen base

point.

Next let us assume that γ is non-null-homotopic and generic. In this case, γ does not lift to the

universal cover; but, the composite map γ ◦ pS1 : R = S̃1 →M does lift to a map γ̃ : R→ M̃ , where

pS1 : R → S1 is the universal covering map of S1 given by pS1(t) = (cos 2πt, sin 2πt). Such a lift

γ̃ : S̃1 → M̃ will be called a cover of γ. Since γ is generic, any cover γ̃ is also generic. Also note that

any cover can be obtained by composing a given cover and an appropriate deck transformation of M̃ .

Let D(γ) be the set of all the double points of γ. Let d ∈ D(γ) be any element. At d, the curve

γ splits into two closed loops γ1 and γ2 based at d. Since γ is non-null-homotopic, at least one of γ1

and γ2 must be non-null-homotopic. The followings are obviously equivalent:

• Either γ1 or γ2 is null-homotopic.

• There exists a cover γ̃ of γ and a double point d̃ of γ̃ such that pM (d̃) = d.

• For any cover γ̃ of γ, there exists a double point d̃ of γ̃ such that pM (d̃) = d.

We define D±(γ) to be the subset of D(γ) consisting of those double points satisfying the conditions

above, and define D0(γ) to be its complement. In other words, double points in D±(γ) correspond to

self-intersections of the covers, and the double points in D0(γ) correspond to mutual intersections of

covers with distinct images.

For each point d ∈ D(γ), we wish to define sgn(γ, d) ∈ {−1, 0,+1} so that the winding number of

γ is equal to the sum
∑
d∈D(γ) sgn(γ, d), and we will succeed in some cases. This was actually done

by H. Tanio and O. Kobayashi in [5] for curves on a torus with a flat riemannian metric, and our

formula is a natural generalization of theirs. For a double point d ∈ D0(γ), we define sgn(γ, d) to be

0. So, the sum above will actually be equal to
∑
d∈D±(γ) sgn(γ, d).

We first define sgn(γ̃, d̃) of a double point d̃ of a cover γ̃ of γ. Let t1 < t2 be the real numbers

such that γ̃(t1) = γ̃(t2) = d̃. Choose a small positive number δ. We define sgn(γ̃, d̃) to be +1 (resp.

−1) if the arc γ̃((t2− δ, t2 + δ)) (drawn horizontally in Fig.1) crosses the arc γ̃((t1− δ, t1 + δ)) (drawn

vertically in Fig.1) from left to right (resp. from right to left). Let GM = π1(M, ∗) be the group

of the deck transformations of pM , and let w : GM → {±1} be the orientation homomorphism. For

T ∈ GM , the following identity holds:

sgn(T ◦ γ̃, T (d̃)) = w(T )sgn(γ̃, d̃).

Let Hγ̃ denote the infinite cyclic subgroup of GM generated by the deck transformation T0 which

sends γ̃(0) to γ̃(1), then Hγ̃ acts freely on the image γ̃(R); therefore, the following identities holds:

sgn(γ̃, T0(d̃)) = w([γ])sgn(γ̃, d̃).
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d̃ d̃

sgn(γ̃, d̃) = +1 sgn(γ̃, d̃) = −1

γ̃ γ̃

Figure 1. Sign convention for a double point of γ̃.

If we deform γ by a regular homotopy, then it lifts to regular homotopies of the covers, and if

a birth/death of two double poits d, e of γ occurs, then corresponding births/deaths occur for self-

and/or mutual intersections of the covers, and each birth/death pair in M̃ must be one of the following:

(1) mutual intersections of covers with distinct images,

(2) double points of the same cover with opposite signs.

In case (1), d and e are both points in D0(γ), and, in case (2), they are both points in D±(γ).

In the rest of the introduction, we consider the case when M is orientable. The non-orientable

case will be treated in the next section.

Let us define sgn(γ, d) for d ∈ D±(γ). First fix a cover γ̃ of γ; then, take any double point d̃ of γ̃

such that pM (d̃) = d. Now set sgn(γ, d) = sgn(γ̃, d̃). This does not depend on the choice of γ̃ or d̃.

The following gives a Whitney-type formula for the winding number W (γ) ∈ Z geometrically

defined in [7] in the case when M is orientable.

Theorem 1. Suppose that M is a complete euclidean/hyperbolic orientable surface and that γ : S1 →
M is a non-null-homotopic generic regular closed curve. Then

W (γ) =
∑

d∈D(γ)

sgn(γ, d) =
∑

d∈D±(γ)

sgn(γ, d)

Proof. Let us write I(γ) =
∑
d∈D±(γ) sgn(γ, d). We show that I(γ) is invariant under regular homo-

topies of γ.

Fix a cover γ̃. For each d ∈ D±(γ), choose any double point d̃ of γ̃ such that pM (d̃) = d. Then

the set D(γ̃) of the double points of γ̃ is the disjoint union

⊔

T∈Hγ̃

{T (d̃) | d ∈ D±(γ)}.

Also note that, for T ∈ Hγ̃ , we have sgn(γ̃, T (d̃)) = sgn(γ̃, d̃), because T preserves orientation. A

regular homotopy of a curve on a surface may change the sum I(γ) only when there are births/deaths

of double points in D±(γ). But corresponding GM -equivariant births/deaths pairs for γ̃ must have

opposite signs. Thus I(γ) is invariant under regular homotopies.

Pick a non-null-homotopic regular closed curve γ on M . Let Lγ be the set of the length of closed

curves freely homotopic to γ. There are two cases.
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If inf Lγ > 0, then there is a closed geodesic γ0 on M which is homotopic to γ, and its winding

number W (γ0) is 0 [7]. Slightly perturb γ0 by a regular homotopy to obtain a generic regular closed

curve γ1. Then add W (γ) small kinks to γ1 to obtain a generic regular closed curve γ2. Then γ2 is

homotopic to γ and its winding number is equal to W (γ). Therefore, γ and γ2 are regularly homotopic

[7]. Covering these steps in M̃ , we obtain a cover γ̃2 of γ2 as follows: first take a cover γ̃0 of the

geodesic γ0; it has no double points, because it is a geodesic on E2 or H2. Then slightly perturb it

by an Hγ̃0-equivariant regular homotopy to obtain γ̃1. It still has no double points, so, I(γ1) is 0.

Then Hγ̃0-equivariantly add appropriate kinks to obtain γ̃2. Then we see that I(γ2) = W (γ). By the

regular homotopy invariance of I(–), we obtain W (γ) = I(γ).

Next let us suppose that inf Lγ is 0. In this case, M is hyperbolic and γ is homotopic to a

holocycle γ0 around a cusp. The winding number of γ0 is 0 [7]. The rest of the argument is similar

to the inf Lγ > 0 case, and this completes the proof. �

Corollary 2. Let M be as above, and assume γ and γ′ are non-null-homotopic generic regular closed

curves on M . Then γ and γ′ are regularly homotopic if and only if the following holds:

(1) γ and γ′ are freely homotopic, and

(2) I(γ) = I(γ′).

2. Non-orientable Case

In this section, we assume that M is non-orientable.

2.1. The case when γ is orientation reversing. When a regular closed curve on M is orientation

reversing, the generalized winding number W (γ) was defined to be an element of Z/2Z.

For d ∈ D(γ), we define sgn(γ, d) ∈ {−1, 0,+1} as in the previousd section. When d ∈ D±(γ),

its sign depend on the choice of γ̃ and d̃, but its mod 2 value is well-defined. The argument in the

previous section can be used to prove the following.

Theorem 3. Suppose that M is a complete euclidean/hyperbolic non-orientable surface and that

γ : S1 →M is an orientation reversing generic regular closed curve. Then

W (γ) =
∑

d∈D(γ)

sgn(γ, d) + 2Z =
∑

d∈D±(γ)

sgn(γ, d) + 2Z ∈ Z/2Z

Corollary 4. Let M be as above, and assume γ and γ′ are orientation reversing generic regular

closed curves on M . Then γ and γ′ are regularly homotopic if and only if the following holds:

(1) γ and γ′ are freely homotopic, and

(2) the numbers of elements of D±(γ) and D±(γ′) have the same parity.

2.2. The case when γ is orientation preserving. In this case, we cannot define sgn(γ, d) which

is independent of the choice of the cover γ̃.

Let γ̃ be a fixed cover of γ. Take a double point d ∈ D±(γ) and a point d̃ on γ̃ satisfying pM (d̃) = d.

Since γ is orientation preserving, the value of sgn(γ̃, d̃) is independent of the choice of d̃. The sum

iγ̃(γ) =
∑

d∈D(γ)

sgn(γ̃, d̃) ∈ Z.
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is independent of the choice of d̃’s, but it does depend on the choice of the cover γ̃. If γ̂ is another

cover of γ, then there is a deck transformation T such that γ̂ = T ◦ γ̃, and we have

sgn(γ̂, d̂) = w(T )sgn(γ̃, d̃),

where d̂ = T (d̃); therefore, we have

iγ̂(γ) = w(T )iγ̃(γ).

On the other hand, if we deform γ by a regular homotopy, then γ̃ is deformed by the lift of the regular

homotopy which starts from γ̃; and this does not change the value of iγ̃(γ).

There are two cases: the case when γ is reversible and the case when γ is not reversible. Let us

recall the notion of reversibility from [7].

Definition 5. (1) Let G be a group with a fixed non-trivial homomorphism w : G → {±1}. An

element g ∈ G is said to be reversible if there is an element h of the centralizer CG(g) of g in G such

that w(h) = −1.

(2) Let M be a non-orientable surface. A loop γ on M based at p ∈M is said to be reversible if the

element [γ] ∈ π1(M,p) is reversible with respect to the orientation homomorphism w : π1(M,p) →
{±1}. If ξ is an orientation reversing closed curve on M based at p such that [ξ∗γξ] = [γ] ∈ π1(M,p)

(i.e. [ξ] ∈ Cπ1(M,p)([γ])), then we say that ξ reverses γ. Here ξ∗ denotes the inverse of the path ξ.

Let us first assume that γ is reversible. In this case, we difine

I(γ) = |iγ̃(γ)|.

This does not depend on the choice of the cover γ̃, and it is easy to check that this is a regular

homotopy invariant. So the following can be checked as in the previous section.

Theorem 6. Suppose that M is a complete euclidean/hyperbolic non-orientable surface and that

γ : S1 → M is an orientation preserving non-null-homotopic generic regular closed curve. Further

assume that γ is reversible. Then

W (γ) = I(γ) ∈ Z

Corollary 7. Let M be as above, and assume γ and γ′ are orientation preserving non-null-homotopic

generic regular closed curves on M and are reversible. Then γ and γ′ are regularly homotopic if and

only if the following holds:

(1) γ and γ′ are freely homotopic, and

(2) I(γ) = I(γ′)

Finally let us assume that γ is not reversible. In this case, we could not define W (γ) ∈ Z in

[7], because we had to choose the sign. More precisely, we needed to fix an orientation preserving

non-null-homotopic non-reversible closed loop γ0 of M and needed to fix a lift γ̃0 : [a, b] → M̃ to

define the invariant Wγ̃0(γ) for a regular closed curve γ which is freely homotopic to γ0.

The same is true for I(γ). In our situation, given γ, we may choose γ0 to be either the shortest

closed geodesic or any holocyle which is freely homotopic to γ. Fixing a lift in the paragraph above

corresponds to taking a cover γ̃ and we can only define Iγ̃0(γ) which depends on the choice of such a

γ̃0.
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By assumption, there is a homotopy from the chosen γ̃0 to a cover γ̃ of γ. Now define

Iγ̃0(γ) = iγ̃(γ).

Note that γ̃ may depend on the choice of the free homotopy between γ0 and γ. But the following is

true:

Proposition 8. Iγ̃0(γ) does not depend on the free homotopy between γ and γ0.

Proof. Suppose one homotopy gives a cover γ̃ and another homotopy gives another cover γ̂. Composing

the trace of the base point by the first homotopy from γ to γ0 and the trace of the base point by the

second homotopy from γ0 to γ, we obain a closed curve ξ based at the base point of γ. If w([ξ]) = −1,

then ξ reverses γ, but this contradicts the assumption that γ is not reversible. So w([ξ]) = +1. This

implies that iγ̂(γ) = iγ̃(γ). �

Now it is easy to show that Iγ̃0(γ) is a regular homotopy invariant, and from this the following

follows as for the previous theorems.

Theorem 9. Suppose that M is a complete euclidean/hyperbolic non-orientable surface and that

γ0 : S1 →M is an orientation preserving non-null-homotopic non-reversible closed curve on M . Fix

a cover γ̃0 of γ0. If γ : S1 →M is a generic regular closed curve homotopic to γ0, then we have

Wγ̃0|[0,1](γ) = Iγ̃0(γ) ∈ Z,

where γ̃0|[0, 1] : [0, 1]→ M̃ denotes the restriction of γ̃0 : R→ M̃ to the interval [0, 1].

Corollary 10. Let M , γ0, and γ̃0 be as in the theorem above and assume γ and γ′ be generic regular

closed curves on M which are homotopic to γ0. Then γ and γ′ are regularly homotopic if and only if

Iγ̃0(γ) = Iγ̃0(γ′)
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