Arithmetic aspects of growth rates of hyperbolic Coxeter groups

Complex Hyperbolic Geometry and Related Topics

January 10th, Okayama University of Science

Yohei Komori (Waseda University, Tokyo)
Contents

1. Growth rates of hyperbolic Coxeter groups

2. Cocompact 2 and 3-dimensional hyperbolic Coxeter groups

3. Cofinite 3-dimensional hyperbolic Coxeter groups

4. 2-Salem numbers as growth rates of 4-dim. Coxeter groups
1. Growth rates of hyperbolic Coxeter groups

Hyperbolic Coxeter polyhedron $P = \cap_{i=1}^{k} H_{i}^{-} \subset \mathbb{H}^n$
all dihedral angles are π/n, ($n \in \mathbb{N} \cup \{\infty\}$)
P is represented by its Coxeter diagram

Geometric Coxeter group (W, S)
$S = \{r_1, r_2, \cdots, r_k\}$, $W = \langle r_1, r_2, \cdots, r_k \rangle$
Growth function of \((W, S)\)

\[f_S(t) = \sum_{k \geq 0} a_k t^k = 1 + \#St + \cdots \]
where \(a_k = \#\{g \in W \mid \ell_S(g) = k\}\)

The growth rate of \((W, S)\): \(\tau := \limsup_{k \to \infty} \sqrt[k]{a_k} = 1/R \) (\(R\): the radius of convergence of \(f_S(t)\))

\(\tau > 1\) i.e. of exponential growth (de la Harpe 87?)
Theorem (Steinberg 68)
Let us denote by (W_T, T) the Coxeter subgroup of (W, S) generated by the subset $T \subseteq S$, and let its growth function be $f_T(t)$. Set $\mathcal{F} = \{ T \subseteq S : W_T \text{ is finite} \}$. Then
\[
\frac{1}{f_S(t^{-1})} = \sum_{T \in \mathcal{F}} \frac{(-1)^{|T|}}{f_T(t)}.
\]

Theorem (Solomon 66)
The growth function $f_S(t)$ of an irreducible finite Coxeter group (G, S) can be written as $f_S(t) = \prod_{i=1}^{k} [m_i + 1]$ where $[n] := 1 + t + \cdots + t^{n-1}$ and $\{m_1, m_2, \cdots, m_k\}$ is the set of exponents of (G, S).
\[
\frac{1}{f_s(t^{-1})} = \tilde{Q}(t)/\tilde{P}(t) \Rightarrow f_s(t) = P(t)/Q(t)
\]

where \(P(t) = t^n\tilde{P}(t), Q(t) = t^n\tilde{Q}(t)\).

Hence \(R = 1/\tau\) is the smallest positive root of \(Q(t)\).

Since \(\tilde{Q}(t)\) is monic, \(\tau > 1\) is an algebraic integer.
<table>
<thead>
<tr>
<th>type of subgroup</th>
<th>growth function</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_3</td>
<td>$[2, 3, 4]$</td>
<td>2</td>
</tr>
<tr>
<td>$A_2 \times A_1$</td>
<td>$[2, 2, 3]$</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>$[2, 3]$</td>
<td>4</td>
</tr>
<tr>
<td>$A_1 \times A_1$</td>
<td>$[2, 2]$</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\frac{1}{f_{S}(t^{-1})} = \frac{-2}{[2, 3, 4]} + \frac{-1}{[2, 2, 3]} + \frac{4}{[2, 3]} + \frac{2}{[2, 2]} + \frac{-4}{[2]} + 1.
\]

\[
f_{S}(t) = \frac{(t + 1)(t^2 + 1)(t^2 + t + 1)}{(t - 1)(t^3 + t - 1)}.
\]
A real algebraic integer $\tau > 1$ is called:

(1) a *Salem number* if τ^{-1} is a conjugate of τ and all conjugates of τ other than τ and τ^{-1} lie on the unit circle. We assume also that there exists a conjugate on the unit circle.

(1') a *“Salem” number* if τ^{-1} is a conjugate of τ and all conjugates of τ other than τ and τ^{-1} lie on the unit circle (i.e. quadratic units are also “Salem” number).
QUIZ: Which is Salem or “Salem”?
A real algebraic integer $\tau > 1$ is called:

(2) a *Pisot number* if all algebraic conjugates of τ other than τ lie in the open unit disk.

(3) a *Perron number* if all of whose conjugates have strictly smaller absolute values.
Theorem (Cannon-Wagreich 92, Parry 93)
The growth rates of cocompact 2 and 3-dimensional hyperbolic Coxeter groups are “Salem” numbers.

Theorem (Floyd 92)
The growth rates of cofinite 2-dimensional hyperbolic Coxeter groups are Pisot numbers.

Theorem (K. and Umemoto 2012)
The growth rates of cofinite 3-dimensional hyperbolic Coxeter groups with 4 and 5 generators (i.e. simplexes, pyramids and prisms) are Perron numbers.
Remark

(1) Kellerhals and Perren (2011) observed numerically that many cocompact 4-dimensional hyperbolic Coxeter groups (including 5 and 6 generated groups) have Perron numbers as their growth rates.

(2) Kolpakov (2012) studied cofinite 3-dimensional hyperbolic Coxeter groups whose growth rated are Pisot numbers.
(3) Kellerhals (2011?) conjectured that every hyperbolic (W, S) has a Perron number as its growth rate. It seems to be a delicate problem heavily depending on the system of generators S:

An example of Machì:

$G = \mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/3\mathbb{Z}$, $S = \{a, b^\pm\}$. Then

$$f_S(t) = \frac{(1 + t)(1 + 2t)}{(1 - t)(1 - 2t^2)}.$$
2. Cocompact 2 and 3-dimensional hyperbolic Coxeter groups

Theorem (Cannon-Wagreich 92, Parry 93)
The growth rates of cocompact 2 and 3-dimensional hyperbolic Coxeter groups are “Salem” numbers.
Proposition (Parry 93)

Let $c_2, \cdots, c_N \in \mathbb{N} \cup \{0\}$ be such that $\sum_{n=2}^{N} \frac{n-1}{n} c_n > 2$. Let $R(x)$ be the rational function

$$R(x) = \frac{x + 1}{x - 1} + \sum_{n=2}^{N} c_n \frac{x - x^n}{(x - 1)(x^n - 1)} = \frac{P(x)}{Q(x)}$$

where $P(x)$ and $Q(x)$ are relatively prime \mathbb{Z}-polynomials. Then $P(x)$ is a product of distinct irreducible cyclotomic polynomials with exactly one “Salem” polynomial.
Salem or “Salem”? (K. 2013)

\text{dim} = 2: \text{pentagon with angles } \pi/2, \pi/4, \pi/4, \pi/4, \pi/4

\[1/f_S(x^{-1}) = 1 + \frac{x - x^2}{(x + 1)(x^2 - 1)} + \frac{4(x - x^4)}{(x + 1)(x^4 - 1)} \]
\[= \frac{(x^2 - 4x + 1)(x^2 + x + 1)}{(x + 1)^2(x^2 + 1)} \]

\[f_S(x) = \frac{(x + 1)^2(x^2 + 1)}{(x^2 - 4x + 1)(x^2 + x + 1)} \]
dim=3: Lambert cube

\[
\frac{1}{f_S(x^{-1})} = 1 - \frac{6}{x + 1} + \frac{9}{(x + 1)^2} + \frac{3}{6} \frac{(x + 1)(x^3 + x^2 + x + 1)}{(x + 1)^3} - \frac{(x + 1)^2(x^3 + x^2 + x + 1)}{(x - 1)(x^2 - 3x + 1)(x^2 + x + 1)}
\]

\[
f_S(x) = \frac{(x + 1)^3(x^2 + 1)}{(x - 1)(x^2 - 3x + 1)(x^2 + x + 1)}
\]
3. Cofinite 3-dimensional hyperbolic Coxeter groups

Classification of cofinite 3-dim. Coxeter simplexes (Lannér 50)
• \((t - 1)(t^4 + t^3 + t^2 + t - 1)\)

• \((t - 1)(3t^2 + t - 1)\)

• \((t - 1)(t^7 + t^6 + 2t^5 + 2t^4 + t^3 + t^2 - 1)\)

• \((t - 1)(t^9 + t^7 + t^6 + t^4 + t^2 + t - 1)\)

• \((t - 1)(2t^5 + t^4 + t^2 + t - 1)\)

• \((t - 1)(t^7 + t^6 + t^5 + t^4 + t^3 - 1)\)
Classification of cofinite 3-dim. Coxeter pyramids (Tumarkin 2004)

\[k = 2, 3, 4; \quad m = 2, 3, 4; \]
\[l = 3, 4; \quad n = 3, 4. \]

\[k = 5, 6; \quad m = 2, 3; \]
\[l = 2, 3, 4, 5, 6. \]
\begin{itemize}
 \item \((k, l, m, n) = (2, 3, 2, 3) : (t-1)(t^5 + 2t^4 + 2t^3 + t^2 - 1)\)
 \item \((2, 3, 2, 4) : (t-1)(t^7 + t^6 + 2t^5 + t^4 + 2t^3 + t - 1)\)
 \item \((2, 3, 3, 3) : (t-1)(t^4 + 2t^3 + t^2 + t - 1)\)
 \item \((2, 3, 3, 4) : (t-1)(t^7 + 2t^6 + 2t^5 + 2t^4 + 2t^3 + t^2 + t - 1)\)
 \item \((2, 3, 4, 4) : (t-1)(t^5 + t^4 + t^3 + 2t - 1)\)
 \item \((2, 4, 2, 4) : (t-1)(t^4 + 2t^3 + t^2 + t - 1)\)
\end{itemize}
Proposition (K. and Umemoto 2012)
Consider the Z-polynomial of degree $n \geq 2$

\[g(t) = \sum_{k=1}^{n} a_k t^k - 1, \]

where a_k is a non-negative integer. We also assume that the greatest common divisor of \(\{k \in \mathbb{N} \mid a_k \neq 0\} \) is 1. Then there is a real number r_0, $0 < r_0 < 1$ which is the unique zero of $g(t)$ having the smallest absolute value of all zeros of $g(t)$.

22
Classification of cofinite 3-dim. Coxeter prisms (Kaplinskaya 74)

P: a non-compact hyp. Coxeter prism with $k \geq 7$.
Then the growth function \(f_{P_1}(t) \) of \(P_1 \) of the non-compact straight hyperbolic Coxeter prism \(P_1 \) with Coxeter diagram

\[\begin{array}{c}
\text{0} & \text{---} & \text{0} & \text{---} & \text{0} \\
\text{k} & \text{6} & \text{0} & \text{0} & \text{0}
\end{array} \]

can be calculated as

\[\frac{(t + 1)^3(t^2 - t + 1)(t^2 + t + 1)(t^{k-1} + \cdots + t + 1)}{(t - 1)Q_1(t)} \]

where \(Q_1(t) = 2t^{k+4} + 3t^{k+3} + 4t^{k+2} + 5t^{k+1} + 6t^k + \cdots + 6t^6 + 5t^5 + 3t^4 + 2t^3 + t^2 - 1, \)
while the growth function $f_{P_2}(t)$ of the compact straight hyperbolic Coxeter prism P_2 with Coxeter diagram

$$0 \quad \cdots \quad 0 \quad 0 \quad 0$$

is equal to

$$\frac{(t + 1)^3(t^2 + 1)(t^2 + t + 1)(t^{k-1} + \cdots + t + 1)}{(t - 1)Q_2(t)}.$$

where $Q_2(t) = -t^{k+5} - t^{k+4} + 2t^{k+2} + 4t^{k+1} + 5t^k + \cdots + 5t^5 + 4t^4 + 2t^3 - t - 1.$
Now P is the “amalgam” of P_1 and P_2 along T, the growth function $f_P(t)$ of P satisfies

$$\frac{1}{f_P(t)} = \frac{1}{f_{P_1}(t)} + \frac{1}{f_{P_2}(t)} - (\frac{1-t}{1+t})}\frac{1}{f_T(t)}$$

where $f_T(t)$ is the growth function of the hyperbolic triangle T with Coxeter diagram

```
    k
```

$$\frac{(t+1)^2(t^2 + t + 1)(t^{k-1} + \cdots + t + 1)}{t^{k+3} + t^{k+2} - t^k - \cdots - t^3 + t + 1}.$$
As a conclusion, $f_P(t)$ of the prism P can be written as

$$
\frac{(t + 1)^3(t + 1)^2(t^2 - t + 1)(t^2 + t + 1)(t^{k-1} + \cdots + t + 1)}{(t - 1)Q(t)}
$$

where

$$Q(t) = 2t^k + 6 + 4t^{k+5} + 7t^{k+4} + 10t^{k+3} + 12t^{k+2} + 14t^{k+1} + 15t^k + \cdots + 14t^7 + 12t^6 + 9t^5 + 6t^4 + 3t^3 + t^2 - 1.$$

Theorem (K. and Umemoto 2012)
The growth rates of cofinite 3-dimensional hyperbolic Coxeter groups with 4 and 5 generators (i.e. simplexxes, pyramids and prisms) are Perron numbers.
4. 2-Salem numbers as growth rates of 4-dim. Coxeter groups

Definition (Samet 52, Kerada 95)
A real algebraic integer $\alpha > 1$ is called a 2-Salem number if it has a real conjugate $\beta > 1$ while other conjugates ω satisfy $|\omega| \leq 1$ and at least one of them is on the unit circle.
Coxeter garlands (T. Zehrt and C. Zehrt 2011)
Gluing formula (T. Zehrt and C. Zehrt)
Consider two Coxeter n-polytope P_1 and P_2 having the same orthogonal face F which is a Coxeter (n-1)-polytope, and let their growth functions be $W_1(t), W_2(t)$ and $F(t)$ respectively. Then the growth function $W_1 *_{P_0} W_2(t)$ of the Coxeter polytope obtained by gluing P_1 and P_2 along F is given by

$$\frac{1}{W_1 *_{F} W_2(t)} = \frac{1}{W_1(t)} + \frac{1}{W_2(t)} + \left(\frac{t-1}{1+t}\right) \frac{1}{F(t)}$$
Let G_n be the Coxeter polytope constructed from n copies of G by (n-1)- gluings along orthogonal facets of G. Then the growth function of G_n is equal to

$$[2, 2, 5, 6](t^5 + 1)/Z_n(t)$$

where

$$Z_n(t) = t^{16} - 2(n + 1)t^{15} + t^{14} + (n - 1)t^{13} + t^{12} + nt^{11} + (n - 1)t^{10} + 2t^9 + 2(n - 1)t^8 + 2t^7 + (n - 1)t^6 + nt^5 + t^4 + (n - 1)t^3 + t^2 - 2(n + 1)t + 1.$$

They showed that $Z_n(t)$ has 2 reciprocal pairs of positive real zeros and all the other zeros locate on the unit circle. Hence Coxeter garlands have “2-Salem” numbers as their growth rates.
Proposition (Kempner 35, T. Zehrt and C. Zehrt)

For \(f \in \mathbb{Z}[t] \) be a palindromic polynomial of even degree \(n \geq 2 \) with \(f(\pm 1) \neq 0 \), define \(g(u) \in \mathbb{Z}[u] \) by

\[
g(u) := (\sqrt{u} - i)^n f\left(\frac{\sqrt{u} + i}{\sqrt{u} - i}\right).
\]

Then

(1) \(f(t) \) has 2k zeros on the unit circle iff \(g(u) \) has k positive real zeros.

(2) \(f(t) \) has 2\(\ell \) real zeros iff \(g(u) \) has \(\ell \) negative real zeros.
Proposition (K. 2013)
Denominator polynomials $Z_n(t)$ are irreducible for any $n \in \mathbb{N}$. Hence Coxeter garlands have 2-Salem numbers as their growth rates.

Key idea: $Z_n(i) = 2$ for all $n \in \mathbb{N}$.

Suppose that $Z_n(t)$ is reducible in $\mathbb{Z}[t]$ as

$$(t^2 + pt + 1)(t^{14} + \cdots + 1).$$

Then $Z_n(i) = pi(a + bi) = 2$ implies that $p = -2$ or $p = -1$ which means $t = 1$ or $t = \frac{1 \pm \sqrt{3}i}{2}$ must be a solution of $Z_n(t)$, but $Z_n(1) = 4n$, $Z_n(\frac{1 \pm \sqrt{3}i}{2}) = (1 \mp \sqrt{3})(n + 1)$, a contradiction.
Coxeter dominoes (Yuriko Umemoto 2013)
Let $D_{\ell,m,n}$ be the Coxeter polytope constructed from $n + 1$ copies of D by ℓ, m and $\ell - m$-times gluings along orthogonal facets of types A, B and C. Then the growth function of $D_{\ell,m,n}$ is equal to $[2, 4, 6, 10]/Q_{\ell,m,n}(t)$ where
\[Q_{\ell,m,n}(t) = t^{18} - (4n + 6)t^{17} + (2n - m + 3)t^{16} \\
+ (3n - m + \ell + 5)t^{15} - (n - 4m + 1)t^{14} - (n - 4m + 1)t^{13} \\
+ (8n - 4m + \ell + 9)t^{12} + (5m - \ell)t^{11} + (10n - 5m + \ell + 11)t^{10} \\
- (2n - 6m + 2)t^9 + (10n - 5m + \ell + 11)t^8 + (5m - \ell)t^7 \\
+ (8n - 4m + \ell + 9)t^6 - (n - 4m + 1)t^5 - (n - 4m + 1)t^4 \\
+ (3n - m + \ell + 5)t^3 + (2n - m + 3)t^2 - (4n + 6)t + 1 \]

She showed that the zeros of \(Q_{\ell,m,n}(t) \) are 2 reciprocal pairs of positive real zeros and the others locating on the unit circle. Hence Coxeter dominoes also have “2-Salem” numbers as their growth rates.
Theorem (Umemoto 2013)
For any $n \equiv 1 \mod 3$, Denominator polynomials $Q_{n,0,n}(t)$ and $Q_{0,n,n}(t)$ are irreducible. Hence these Coxeter dominoes have 2-Salem numbers as their growth rates.

Final remarks
1. In general cocompact 4-dim hyp. Coxeter groups have not 2-Salem numbers as their growth rates.

2. There are notions of j-Salem or j-Pisot numbers (due to Samet and Kerada)