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%m% 1) Introduction: Classical Kleinian groups.

Matemdticas

Kleinian groups were introduced by Poincaré as the monodromy
groups of certain second order differential equations.

More generally:

Definition

A (classical) Kleinian group is a discrete subgroup of PSL(2,C)
acting on the Riemann sphere S? =2 C = CP! with non-empty
region of discontinuity.




%Me Examples:
Matemdticas

e Fuchsian groups (i.e., discrete subgroups of PU(1, 1)).
e Fundamental groups of hyperbolic manifolds of dimensions 2, 3.
e Schottky and kissing Schottky groups, etc.




Figura : Kissing Schottky groups



%Me A basic property
Matemdticas

A Kleinian group G splits the sphere in two invariant sets: the limit
set A(G) and the ordinary set Q(G). The latter is where the group
acts discontinuously, and A(G) is its complement.

Theorem (Some fundamental properties of limit set)

» A(G) is closed and non-empty (unless G is finite).

» A(G) is the set of cluster points of the orbits in CP!

» A(G) consists of 1, 2 or infinitely many points. (The group is
said to be elementary when N(G) has finite cardinality.)

» If G is not elementary, then N(G) is a nowhere dense perfect
set, minimal for the action of G.




Theorem (Some fundamental properties of ordinary set)

» Q(G) is largest set where action is properly discontinuously.

» Q(G)/G is a Riemann surface with a projective orbifold
structure.

» Q(G) coincides with equicontinuity set.

» The number of connected components of Q(G) can be 0,1,2
or oo.

Many more properties that | will not mention.

Action on Q(G) is "mild". The study of orbit spaces Q(G)/G
is the paradigm of complex geometry.

Action on A(G) is "wild": It is here where dynamics
concentrates. Paradigm of holomorphic dynamics



%mw II) Higher dimensional setting

Matemdticas

In complex dimension 1 we have isomorphisms:
PSL(2,C) = Conf  (S?) = Iso, (H3)

In higher dimensions there is a dichotomy :

e We can look at Conf(S");n > 2. Same as Iso (HE™).
Rich theory with outstanding developments by many authors.
Main-stream for several decades.

e We can also look at PSL(n + 1, C), holomorphic
automorphisms of CP". Rich theory too, still in its childhood in
many aspects.



Discrete groups of complex projective transformations have
appeared in various settings. For instance, the most natural:

e Discrete subgroups of PU(n, 1), the group of holomorphic
isometries of complex hyperbolic space. This is itself a very rich
and interesting area. Interesting work by various authors: Professor
Kamiya has made remarkable contributions.

e Subgroups of Aff(C"). Include fundamental groups of Hopf
surfaces and Inoue surfaces, and many more.



e Discrete subgroups of PSL(n + 1,C) appear also as the
monodromy groups of certain:

» Partial differential equations (M. Yoshida, 1980).
» Higher order ordinary differential equations.
» Ricatti Foliations (B. Scardua).

e Discrete subgroup of PSL(n + 1, C) have appeared also in
interesting papers by M. Kato on compact complex 3-folds, and
by M. Nori as a mean to constructing compact complex manifolds
(with a projective structure) in higher dimensions.



In 1990 J. Seade & Alberto Verjovsky introduced the following
concept. This unifies previous examples:

Definition

A complex Kleinian group is a discrete subgroup of projective
transformations that acts on some P leaving invariant a
non-empty open set where the action is properly discontinuous.

We gave several ways for constructing such groups, besides
complex hyperbolic and complex affine groups (via twistor theory,
Schottky groups, suspensions, etc.) For instance we proved:

The fundamental group of every real hyperbolic manifold of
dimension 5 acts canonically on CP3 as a subgroup of PSL(4, C)
and every orbit is dense.




Our focus now is in complex dimension 2.
Some of the main questions we have studied are:

» What open subsets of CP? appear as invariant sets where a
discrete subgroup of PSL(3, C) acts properly discontinuously
with compact quotient. What about the orbit spaces?

» What is the “correct"notion of the limit set? What can we say
about its geometry, topology and dynamics? and about its
complement?

» What type of complex Kleinian groups one has?
(Classification?)

» Is there a Sullivan's dictionary in dimension 2, comparing
Kleinian groups and rational maps?



From now on | speak about work done by our team in Mexico,
mostly with;

Angel Cano,

W. Barrera and

J. P. Navarrete,

and others.

Also a recent work with John Parker.



%mw About I: divisible sets.
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(Joint with Angel Cano (Geometria Dedicata 2014))

Definition

A subgroup G C PSL(3,C) is quasi-cocompact if there exists a
non-empty G-invariant open set Q C CP? on which G acts properly
discontinuously with compact quotient Q/G.

Notice /G is a compact orbifold with a complex projective
structure.

The following theorem improves a classical theorem of
Kobayashi-Ochiai, Inoue and Klingler for compact complex surfaces
with a projective structure.



Theorem (Cano-Seade)

Let G C PSL(3,C) be a quasi-cocompact group. Then G is either
virtually affine or complex hyperbolic. Morever

» If G is not virtually cyclic, then the open set U is contained in
Qxui(G), which is the largest open set on which G acts
properly discontinuously.

» If G is not virtually the fundamental group of an Inoue Surface
or the fundamental group of a primary Kodaira surface then
Eq(G) = QKuI(G)-

The full version of this result also provides the complete list of:
» The open sets in IP)?C that can appear as (maximal) regions
where the action is properly discontinuous.
» The classification of all quasi-cocompact groups.

» The corresponding orbifolds.
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I1) The limit set

In dimension 1, limit set is:

a) Complement of the set where action is discontinuous.

b) Complement of the largest set where action is properly
discontinuous.

c) Complement of region of equicontinuity.
d) Set of cluster points of orbits.
e) Closure of set of fixed points of loxodromic elements.

In higher dimensions, life is “richer".



The Kulkarni-Navarrete’'s example:
Let G be the cyclic group generated by the projective

transformation:
2

271

This has three fixed points {[e1], [e2], [e3]}, which determine three
invariant lines.

Two of these lines are specially interesting because they are
repelling/attracting: [es], [e1] and [es], [e3].




Easy to show:

» All orbits of points accumulate at {[e1], [e2], [e3]} but action is
not properly discontinuous on the complement of these points.

» One has twp sets:
P\ (lelleduflen) . P\ ({el (el vle)
which are maximal regions on which G acts properly
discontinuously. There is not one such largest set.

» The equicontinuity set is: P2\ <f62], [e1] U [ea], [63]) = Eq(G).
» The discontinuity set of G is: P2\ ({[e1], [e2], [e3]})-

So ... whom should we call the limit set?

There are other examples with even more “pathologies".



%Me The Kulkarni limit set
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We consider discrete subgroups of PSL(n + 1, C) acting on P¢.

» Let A(G) be the closure of the set cluster points of orbits .
» The Kulkarni's limit set is Aky(G) = AN(G) U Lo(G), where
L>(G) is the closure of cluster points of the family
{GK : K Cc P"\ A(G) is compact}.
» The Kulkarni region of discontinuity is
Qkui(G) = P2\ Akui(G).

It is easy to see that the action on Qk,/(G) is properly
discontinuous. Hence: the group is complex Kleinian if Q,/(G) is
non-empty.



We'll show this is the correct notion of limit set in complex
dimension 2 (Not so in higher dimensions)

Even so, there are examples (as the previous one) which are
“exceptional". This corresponds to the “elementary groups", which
in some sense are special.

In previous example, the Kulkarni limit set consists of exactly two
lines, and its complement coincides with the region of
equicontinuity.



%m% Structure of the limit set
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For Kleinian subgroups of PSL(2, C) the limit set may consist of 1
or 2 points, or else it has infinite cardinality. Previous example in
CP? has two lines as limit set.

Other examples:

Example (a line; parabolic)

Consider the cyclic group generated by the projectivization of the
map:

= O O

11
5= 01
0

Then 1 is the only eigenvalue. The limit set is

Akul(G) = &1, 6.




Another example:

Example (a line and a point; loxodromic)

Now let G be the cyclic group generated by the projectivization of
the map:

v =

o oo

00
a 0 , with |a] # 1.
0 ot

Then Lo = Ly = Ly is the union of the line &, 5 and the point es.
Hence Akyi(G) is now:

/\KU/(G) - m U {6‘3} o




Example (three lines)

Now consider the group generated by the matrix in previous
example, together with a new generator:

~ a 00 00 1
G:< 0 a O ,/] 010 ,|oz|7é1>
0 0 ot 1 00

Second matrix permutes the invariant lines &1, €5, &, €3 and &3, €.
Hence the limit set is:

AKU/(G) = éla €2 U é27€::> U /é37 e]\. .

So we have examples of groups where the limit set has:
i) one line; ii) one line and one point; iii) two lines; iv) three
lines; and v) infinitely many lines.



Theorem (Cano-Seade)

Let G C PSL(3,C) be a complex Kleinian group. Then Nk,(G)
contains at least one projective line.

Theorem (Barrera-Cano-Navarrete)
Let G C PSL(3,C) be a discrete group, then:
» The number of lines in Ak, (G) is 1, 2, 3 or infinite.

» The number of lines in general position contained in Nk, (G)
is 1, 2, 3, 4 or infinite. (All these cases actually take place.)

» The number of isolated points in Nk,/(G) is at most one, and
that can only happen when the group is virtually cyclic.




PROBLEM: Understand topology and geometry of the
discontinuity region and the limit set Ak,/(G), and the
dynamics on the latter.

Not easy. Have partial results, actually just the first steps. A lot to

be done.

To deepen our study, let us focus in the particularly rich class of
comply hyperbolic groups.



%m% I11) Complex hyperbolic groups
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Consider discrete G C PU(n, 1).

Acts on CP" preserving the ball H consisting of points in CP”
whose homogeneous coordinates (zi, ..., z,+1) satisfy:

2+l + -+ |zl < lzpaf?

In this setting there is another useful concept of a limit set,
following classical (Poincaré’s) definition:

Definition

The Chen-Greenberg limit set Acg(G) is the set of accumulation
points of orbits in H.




As in the classical case one has Acg(G) C OHP = S?"~1, since
action on HP is by isometries.

This definition of a limit set is good if we look at action only on
HZ : It has all properties of usual limit set for Kleinian groups,

e Yet, this takes no notice of the action on the complement
CP" \ HZ.



The next result determines relation between Chen-Greenberg and
Kulkarni limit sets.

This provides some global info about action on CP? \ HZ out from
info about the action on the ball HZ

For each x € OHZ, let L, be the unique complex projective line in
CP? tangent to 8H% at x.

Theorem (Navarrete 2006)

The Kulkarni limit set is

AKuI(G) = U »Cx

x€Nce ( G)

Hence, if G is non-elementary, then Nk, /(G) has co-many lines.




Want to deepen understanding: Restrict to a particularly interesting
special case: joint work with Angel Cano and John Parker.

Start with an easy example:

Example (C-Fuchsian groups)

Let G C U(1,1) & Isoy(H2) cofinite; and consider inclusion:

a b
c d
Leaves invariant sphere (’)H(% and also leaves invariant the projective

line Loo = {[0: 25 : z3] : (22, 23) € C?\ {(0,0)}}. Hence it leaves
invariant the circle

1 00
0 a b € PU(2,1).
0 c d

OHE = OHZ N Lo = {[0: e 1] : ¢ € [0,2m)}.

This circle turns out to be the Chen-Greenberg limit set.




Every line tangent to 8H% at a point in 8]HI(2C N L passes thru
[1:0:0], the projective dual of line L.

Thus Navarrrete's theorem implies:
Akui(G) is a cone, union of all projective lines passing thru
[1:0:0] and a point in circle OHL.

= Aku(G) \ {[1:0:0]} is a solid torus S* x C.

Complement Q,, is a trivial fibre bundle over the projective line
L+ minus the equator 8]1—]1(1Cv with fibre C.

Projection Qxu — Loo \ 8]1-]1(:}j is easy to describe:

If x € Qxu let £x be projective line determined by x and
{[1:0:0]}. Then x — ({x N Lo)

Hence Q. = two copies of D? x C, where D? = open 2-disc.

A special type of a “suspension group": Easy to describe
dynamics on CP? out from the action on £, = CP!.



Example (R-Fuchsian groups)

Now consider same G C Iso; (HZ), now regarded as SO (2,1),
and its inclusion in PU(2, 1) via its embedding in SU(2,1).

Action on CP? leaves invariant:

a) H2 and its boundary OHZ = S?

b) Pr =P({(x,y,z € C3|x,y,z € R}) =2 RP?, and

c) the intersections: H2 N Py = HZ ;

OHZ N Py = OHZ = RP! ~ St

Now the Chen-Greenberg limit set is Acg(G) = OHZ = RP?.
Want to look at Kulkarni limit set Ak,/(G).

This is the union of all projective lines tangent to 8H(2C at points in
Acg(G) = OHZ.



Not as simple as C-Fuchsian case: In that case all lines were
confocal.

Now each point in interior of Mdbius strip M := Pyx \ Hf{ is the
meeting point of exactly two lines in Aky/(G).
Hence M C Akui(G).

What else we have in Aky/(G)?

Need to determine when a projective line in CP? is tangent to OHZ
at a point in 8]1-]1[2[{.

i.e. Want to characterise 2-planes in C>! which give rise to
projective lines tangent to OH?Z, particularly —but not only— at
points in 8H]§.

Use Hermitian cross product X : C** x C%! — C?! (Bill Goldman)



Can be defined by:

21 wi Z3Wo — Zow3
| K lw | =|zZ1iws — Z3w1
z3 w3 Z1Wo — ZoW1

For every A, pu € C* and for every z, w € C>! one has:
(A2) X (uw) = Az (zX w).

Alternating form, bilinear, except that scalars act via their complex
conjugate.
If zand w are L. D. = X = (0,0,0)

If zand w are L. |. = X is a vector orthogonal to both z and w.



1. Aku is a 3-dimensional semi-algebraic set defined by:
(izXZ,izRZ) =0 and |z1|2 + |2|* > |z|2.

2. Its singular set is the Mébius strip M := Py \ HZ. Away from
it, is a smooth 3-manifold: Ny, \ M actually is a fibre bundle
over OH3,.

(with fibre at each x € OHﬁ the corresponding sphere L,
—tangent to 8H% at x— minus the circle C, := L, N M.)

3. Thence Nk, \ M is diffeomorphic to a disjoint union of two
solid tori ST x R2.




Thus Ak, splits CPP? into “pieces"that form the Kulkarni region of
discontinuity Q.

Now we want to describe Q.

Recall one has a partition C>! = V_ U Vg U V., where these are
the sets of negative, null and positive vectors for the usual
quadratic form in C21.

Similarly, consider function f(z) = (izX Z,izX Z), one has a
partition of C>! into positive, null and negative vectors for f:
U ={zeC?®: f(z2)>0}={zeC® :izRze V,},

Us = {z€C\{0} : f(z) =0}
={zcC\{0}: izKZ e V or izKZ = 0};
U ={zcC?®: f(z) <0} ={zeC?® :izRzec V_}.



Get induced partition

CP? = PU, UPUy UPU_

One has:

Theorem

The three sets PU,., PUy, PU_ are SO, (2, 1)-invariant (and so are
HZ and the real projective space Py) and:

(i) Limit set is: Nk, = PUg \Hi =PUy \ PV_ .
(ii) Kulkarni discontinuity region is: Q, = (PUy UH2) UPU-

Now say more about Q.



Set: PU; UH2 :=Q, and PU_ :=Q_
Thus H% G Q+ and QKUI = Q+ uQ_

Theorem

1. 3 natural projection map M : Q, UQ_ — H2, an
SO (2, 1)-equivariant fibre bundle over HZ with fibre three
disjoint 2-discs (= Q. = 3-copies of B*)

2. Fibre over o :=[0:0: 1] in Q4 is the Lagrangian 2-plane
“orthogonal to HZ within HZ".

3. Fibre over 0 :=[0:0:1] in QY,Q2 are the hemispheres D}
and Df, determined by equator (z1Z2) = 0 in line
So :={lz1:22: 0] : (z1,22) € C*\ {(0,0)}}, which is the
projective dual of [0: 0 : 1].

4. These fibres L,, D, D2 have common boundary the circle

Co=oLs ={lin:ive:0] : (ny2) €R2\{(0,0)}]




We get:

Corollary

e For every lattice G C SO, (2,1) acting on CP? via the inclusion
504(2,1) — SU(2,1), the Kulkarni set Qk, consists of three open
disjoint 4-balls B*, each of these being SO (2, 1)-invariant.

e This is a complete Kobayashi hyperbolic space, which coincides
with the equicontinuity region of G and it is the largest set where
G-action is properly discontinuous.




REMARKS
1) We know (Gusevskii-Parker) that there are embeddings of the
modular group in PU(2,1) as a real Fuchsian and as a C-Fuchsian
groups that can be connected by a family of quasi-Fuchsian groups.
It would be interesting to describe what happens with the limit set
and discontinuity region in CP? in this deformation.

2) Related to following general problem: If G is cofinite in
PU(2,1), then its action on CP? \ H2 is minimal.
Assume otherwise that G (is non-elementary and) acts on OHZ

with non-empty region of discontinuity. Many questions, e.g.:

i) What is the largest set in CIP? where action is properly
discontinuous? How many connected components it has?

i) If we are given a fundamental domain for its action in HZ. Can
we construct a fundamental domain for its action in CP?? Or at
least on the connected component that contains the ball H%?



3) Recall (classical) that if G € PSL(2,C) is discrete, then its
region of discontinuity in CP! can have 1, 2 or co-many connected
components. What can we say for groups acting on CP??

» The R-Fuchsian groups above are 1st examples we know
where Q. has exactly 3-components.

Now we know examples where the number of connected
components in Qs is 0,1,2,3,4, co.

» Q: Are these the only possibilities 7

» These are some of the very many questions we cannot yet
answer. Vast field of research waiting to be explored

Now we move to groups which may not be complex-hyperbolic.
Want to go deeper into the dynamics of the limit set.
Need first some words about:



%mw Classification of elements
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Just as in dimension 1, one has the following trichotomy (following
Navarrete et al): An element of PSL(3,C) is

» Elliptic if it has a lifting to SL(3, C) which is diagonalizable
and all eigenvalues have norm 1.

» Parabollic if it has a lifting to SL(3, C) which is not
diagonalizable and all eigenvalues have norm 1.

» Loxodromic otherwise.

It can be shown that this classification can be given in terms of the
limit set (Cano-Loeza): Elliptic iff Ak, = 0 or CP?; parabolic iff
Ay is connected; loxodromic iff Ak, has two connected
components (can be two lines or a line and a point).



In particular, each loxodromic element has at least one
attracting or repelling line.

Theorem (Barrera-Cano-Navarrete-Seade)

Let G C PSL(3,C) be such that the number of lines in general
position in Ak, (G) is at least 3. Then :

1. Qku(G) := CP2\ Aky(G) is the largest open set on which G
acts properly discontinuously, and it coincides with the
equicontinuity region.

2. The limit set Ak,(G) is the closure of the set of
repelling-attracting lines of loxodromic elements.

We can also say what happens if the number of lines lying in
general position in Ak, (G) is < 2.



The essentially new part in this theorem is the second statement.
The prove is not at all easy.

Key point is proving that if the limit set has at least three lines in
general position, then the group must contain loxodromic elements.

Since elliptic elements are all of finite order and therefore they have
no effect on the limit set, key-step is studying purely parabolic
groups:

If G is a purely parabolic group, then its Kulkarni limit set is either
a line or a cone of lines with a common vertex p and base a circle
St contained in a projective line. So it has at most two lines in
general position.
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Sullivan Dictionary dimension 2

Rational function acting on P2
with degree at least 2

Finitely generated non
elementary projective group

Julia set

Limit set

Fatou set

Ordinary set

Julia set is closed and invariant

Limit set is closed and invariant

Julia set is connected

Limit set is connected,

Julia set is non empty

Limit set is non-empty

?

Limit set is the closure of invariant
attractive lines of loxodromic elements

Fatou set is a complete
Kobayashi hyperbolic space

Ordinary set is a complete
Kobayashi hyperbolic space

Fatou set is a Stein manifold

Ordinary set is a Stein manifold

Fatou set is pseudoconvex

Ordinary set is pseudoconvex




For more on the foundations of the subject see our monograph
(Progress in Maths. vol. 303, Birkhauser, 2012)

Angel Cano
Juan Pablo Navarrete
José Seade
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Thank you very much for your attention

BOBESSZVET



Congratulations Professor KAMIYA
and

my very best wishes for this new beginning!!!



