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I) Introduction: Classical Kleinian groups.

Kleinian groups were introduced by Poincaré as the monodromy
groups of certain second order differential equations.

More generally:

Definition
A (classical) Kleinian group is a discrete subgroup of PSL(2,C)
acting on the Riemann sphere S2 ∼= Ĉ ∼= CP1 with non-empty
region of discontinuity.
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Examples:

• Fuchsian groups (i.e., discrete subgroups of PU(1, 1)).
• Fundamental groups of hyperbolic manifolds of dimensions 2, 3.
• Schottky and kissing Schottky groups, etc.



Figura : Kissing Schottky groups
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A basic property

A Kleinian group G splits the sphere in two invariant sets: the limit
set Λ(G ) and the ordinary set Ω(G ). The latter is where the group
acts discontinuously, and Λ(G ) is its complement.

Theorem (Some fundamental properties of limit set)
I Λ(G ) is closed and non-empty (unless G is finite).
I Λ(G ) is the set of cluster points of the orbits in CP1

I Λ(G ) consists of 1, 2 or infinitely many points. (The group is
said to be elementary when Λ(G ) has finite cardinality.)

I If G is not elementary, then Λ(G ) is a nowhere dense perfect
set, minimal for the action of G .



Theorem (Some fundamental properties of ordinary set)
I Ω(G ) is largest set where action is properly discontinuously.
I Ω(G )/G is a Riemann surface with a projective orbifold

structure.
I Ω(G ) coincides with equicontinuity set.
I The number of connected components of Ω(G ) can be 0, 1, 2

or ∞.

Many more properties that I will not mention.

Action on Ω(G ) is "mild” . The study of orbit spaces Ω(G )/G
is the paradigm of complex geometry.

Action on Λ(G ) is "wild” : It is here where dynamics
concentrates. Paradigm of holomorphic dynamics
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II) Higher dimensional setting

In complex dimension 1 we have isomorphisms:

PSL(2,C) ∼= Conf+(S2) ∼= Iso+(H3
R)

In higher dimensions there is a dichotomy :

• We can look at Conf+(Sn) ; n ≥ 2. Same as Iso+(Hn+1
R ).

Rich theory with outstanding developments by many authors.
Main-stream for several decades.

• We can also look at PSL(n + 1,C), holomorphic
automorphisms of CPn. Rich theory too, still in its childhood in
many aspects.



Discrete groups of complex projective transformations have
appeared in various settings. For instance, the most natural:

• Discrete subgroups of PU(n, 1), the group of holomorphic
isometries of complex hyperbolic space. This is itself a very rich
and interesting area. Interesting work by various authors: Professor
Kamiya has made remarkable contributions.

• Subgroups of Aff(Cn). Include fundamental groups of Hopf
surfaces and Inoue surfaces, and many more.



• Discrete subgroups of PSL(n + 1,C) appear also as the
monodromy groups of certain:
I Partial differential equations (M. Yoshida, 1980).
I Higher order ordinary differential equations.
I Ricatti Foliations (B. Scardua).

• Discrete subgroup of PSL(n + 1,C) have appeared also in
interesting papers by M. Kato on compact complex 3-folds, and
by M. Nori as a mean to constructing compact complex manifolds
(with a projective structure) in higher dimensions.



In 1990 J. Seade & Alberto Verjovsky introduced the following
concept. This unifies previous examples:

Definition
A complex Kleinian group is a discrete subgroup of projective
transformations that acts on some Pn

C leaving invariant a
non-empty open set where the action is properly discontinuous.

We gave several ways for constructing such groups, besides
complex hyperbolic and complex affine groups (via twistor theory,
Schottky groups, suspensions, etc.) For instance we proved:

Theorem
The fundamental group of every real hyperbolic manifold of
dimension 5 acts canonically on CP3 as a subgroup of PSL(4,C)
and every orbit is dense.



Our focus now is in complex dimension 2.
Some of the main questions we have studied are:

I What open subsets of CP2 appear as invariant sets where a
discrete subgroup of PSL(3,C) acts properly discontinuously
with compact quotient. What about the orbit spaces?

I What is the “correct"notion of the limit set? What can we say
about its geometry, topology and dynamics? and about its
complement?

I What type of complex Kleinian groups one has?
(Classification?)

I Is there a Sullivan’s dictionary in dimension 2, comparing
Kleinian groups and rational maps?



From now on I speak about work done by our team in Mexico,
mostly with;
Angel Cano,
W. Barrera and
J. P. Navarrete,
and others.
Also a recent work with John Parker.
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About I: divisible sets.

(Joint with Angel Cano (Geometria Dedicata 2014))

Definition
A subgroup G ⊂ PSL(3,C) is quasi-cocompact if there exists a
non-empty G -invariant open set Ω ⊂ CP2 on which G acts properly
discontinuously with compact quotient Ω/G .

Notice Ω/G is a compact orbifold with a complex projective
structure.

The following theorem improves a classical theorem of
Kobayashi-Ochiai, Inoue and Klingler for compact complex surfaces
with a projective structure.



Theorem (Cano-Seade)
Let G ⊂ PSL(3,C) be a quasi-cocompact group. Then G is either
virtually affine or complex hyperbolic. Morever
I If G is not virtually cyclic, then the open set U is contained in

ΩKul(G ), which is the largest open set on which G acts
properly discontinuously.

I If G is not virtually the fundamental group of an Inoue Surface
or the fundamental group of a primary Kodaira surface then
Eq(G ) = ΩKul(G ).

The full version of this result also provides the complete list of:

I The open sets in P2
C that can appear as (maximal) regions

where the action is properly discontinuous.
I The classification of all quasi-cocompact groups.
I The corresponding orbifolds.
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II) The limit set

In dimension 1, limit set is:

a) Complement of the set where action is discontinuous.

b) Complement of the largest set where action is properly
discontinuous.

c) Complement of region of equicontinuity.

d) Set of cluster points of orbits.

e) Closure of set of fixed points of loxodromic elements.

In higher dimensions, life is “richer".



The Kulkarni-Navarrete’s example:
Let G be the cyclic group generated by the projective
transformation:  2

1
2−1


This has three fixed points {[e1], [e2], [e3]}, which determine three
invariant lines.
Two of these lines are specially interesting because they are
repelling/attracting:

←−−−→
[e2], [e1] and

←−−−→
[e2], [e3].



Easy to show:
I All orbits of points accumulate at {[e1], [e2], [e3]} but action is

not properly discontinuous on the complement of these points.
I One has two sets:

P2 \
(←−−−→

[e2], [e1] ∪ {[e3]}
)
, P2 \

(←−−−→
[e2], [e3] ∪ [e1]

)
which are maximal regions on which G acts properly
discontinuously. There is not one such largest set.

I The equicontinuity set is: P2 \
(←−−−→

[e2], [e1] ∪
←−−−→
[e2], [e3]

)
= Eq(G ).

I The discontinuity set of G is: P2 \ ({[e1], [e2], [e3]}).

So ..... whom should we call the limit set?

There are other examples with even more “pathologies".
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The Kulkarni limit set

We consider discrete subgroups of PSL(n + 1,C) acting on Pn
C.

Definition
I Let Λ(G ) be the closure of the set cluster points of orbits .
I The Kulkarni’s limit set is ΛKul(G ) = Λ(G ) ∪ L2(G ), where

L2(G ) is the closure of cluster points of the family
{GK : K ⊂ Pn \ Λ(G ) is compact}.

I The Kulkarni region of discontinuity is
ΩKul(G ) = P2

C \ ΛKul(G ).

It is easy to see that the action on ΩKul(G ) is properly
discontinuous. Hence: the group is complex Kleinian if ΩKul(G ) is
non-empty.



We’ll show this is the correct notion of limit set in complex
dimension 2 (Not so in higher dimensions)

Even so, there are examples (as the previous one) which are
“exceptional". This corresponds to the “elementary groups", which
in some sense are special.

In previous example, the Kulkarni limit set consists of exactly two
lines, and its complement coincides with the region of
equicontinuity.
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Structure of the limit set

For Kleinian subgroups of PSL(2,C) the limit set may consist of 1
or 2 points, or else it has infinite cardinality. Previous example in
CP2 has two lines as limit set.
Other examples:

Example (a line; parabolic)
Consider the cyclic group generated by the projectivization of the
map:

γ̃ =

 1 1 0
0 1 0
0 0 1

 .

Then 1 is the only eigenvalue. The limit set is

ΛKul(G ) =←−→e1, e2 .



Another example:

Example (a line and a point; loxodromic)
Now let G be the cyclic group generated by the projectivization of
the map:

γ̃ =

 α 0 0
0 α 0
0 0 α−1

 , with |α| 6= 1 .

Then L0 = L1 = L2 is the union of the line ←−→e1, e2 and the point e3.
Hence ΛKul(G ) is now:

ΛKul(G ) =←−→e1, e2 ∪ {e3} .



Example (three lines)
Now consider the group generated by the matrix in previous
example, together with a new generator:

G̃ =

〈 α 0 0
0 α 0
0 0 α−1

 ,

 0 0 1
0 1 0
1 0 0

 , |α| 6= 1

〉

Second matrix permutes the invariant lines ←−→e1, e2, ←−→e2, e3 and ←−→e3, e1.
Hence the limit set is:

ΛKul(G ) =←−→e1, e2 ∪←−→e2, e3 ∪←−→e3, e1 .

So we have examples of groups where the limit set has:
i) one line; ii) one line and one point; iii) two lines; iv) three
lines; and v) infinitely many lines.



Theorem (Cano-Seade)
Let G ⊂ PSL(3,C) be a complex Kleinian group. Then ΛKul(G )
contains at least one projective line.

Theorem (Barrera-Cano-Navarrete)
Let G ⊂ PSL(3,C) be a discrete group, then:
I The number of lines in ΛKul(G ) is 1, 2, 3 or infinite.
I The number of lines in general position contained in ΛKul(G )

is 1, 2, 3, 4 or infinite. (All these cases actually take place.)
I The number of isolated points in ΛKul(G ) is at most one, and

that can only happen when the group is virtually cyclic.



PROBLEM: Understand topology and geometry of the
discontinuity region and the limit set ΛKul(G ), and the
dynamics on the latter.

Not easy. Have partial results, actually just the first steps. A lot to
be done.

To deepen our study, let us focus in the particularly rich class of
comply hyperbolic groups.
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III) Complex hyperbolic groups

Consider discrete G ⊂ PU(n, 1).

Acts on CPn preserving the ball Hn
C consisting of points in CPn

whose homogeneous coordinates (z1, ..., zn+1) satisfy:

|z1|2 + |z1|2 + · · ·+ |zn|2 < |zn+1|2

In this setting there is another useful concept of a limit set,
following classical (Poincaré’s) definition:

Definition
The Chen-Greenberg limit set ΛCG (G ) is the set of accumulation
points of orbits in Hn

C.



As in the classical case one has ΛCG (G ) ⊂ ∂Hn
C
∼= S2n−1, since

action on Hn
C is by isometries.

This definition of a limit set is good if we look at action only on
Hn

C : It has all properties of usual limit set for Kleinian groups,

• Yet, this takes no notice of the action on the complement
CPn \Hn

C.



The next result determines relation between Chen-Greenberg and
Kulkarni limit sets.

This provides some global info about action on CP2 \H2
C out from

info about the action on the ball H2
C

For each x ∈ ∂H2
C, let Lx be the unique complex projective line in

CP2 tangent to ∂H2
C at x .

Theorem (Navarrete 2006)
The Kulkarni limit set is

ΛKul(G ) =
⋃

x∈ΛCG (G)

Lx

Hence, if G is non-elementary, then ΛKul(G ) has ∞-many lines.



Want to deepen understanding: Restrict to a particularly interesting
special case: joint work with Angel Cano and John Parker.

Start with an easy example:

Example (C-Fuchsian groups)

Let G ⊂ U(1, 1) ∼= Iso+(H2
R) cofinite; and consider inclusion:

(
a b
c d

)
7−→

[1 0 0
0 a b
0 c d

] ∈ PU(2, 1).

Leaves invariant sphere ∂H2
C and also leaves invariant the projective

line L∞ =
{

[0 : z2 : z3] : (z2, z3) ∈ C2 \ {(0, 0)}
}
. Hence it leaves

invariant the circle

∂H1
C = ∂H2

C ∩ L∞ =
{

[0 : e iφ : 1] : φ ∈ [0, 2π)
}
.

This circle turns out to be the Chen-Greenberg limit set.



Every line tangent to ∂H2
C at a point in ∂H2

C ∩ L∞ passes thru
[1 : 0 : 0], the projective dual of line L∞.

Thus Navarrrete’s theorem implies:
ΛKul(G ) is a cone, union of all projective lines passing thru
[1 : 0 : 0] and a point in circle ∂H1

C.

⇒ ΛKul(G ) \
{

[1 : 0 : 0]
}
is a solid torus S1 × C.

Complement ΩKul is a trivial fibre bundle over the projective line
L∞ minus the equator ∂H1

C, with fibre C.

Projection ΩKul −→ L∞ \ ∂H1
C is easy to describe:

If x ∈ ΩKul let `x be projective line determined by x and
{[1 : 0 : 0]

}
. Then x 7→ (`x ∩ L∞)

Hence ΩKul
∼= two copies of D2 × C, where D2 = open 2-disc.

A special type of a “suspension group": Easy to describe
dynamics on CP2 out from the action on L∞ ∼= CP1.



Example (R-Fuchsian groups)

Now consider same G ⊂ Iso+(H2
R), now regarded as SO+(2, 1),

and its inclusion in PU(2, 1) via its embedding in SU(2, 1) .

Action on CP2 leaves invariant:
a) H2

C and its boundary ∂H2
C = S3

b) P< = P({(x , y , z ∈ C3|x , y , z ∈ R}) ∼= RP2 , and
c) the intersections: H2

C ∩ P< = H2
R ;

∂H2
C ∩ P< = ∂H2

R = RP1 ∼= S1

Now the Chen-Greenberg limit set is ΛCG (G ) = ∂H2
R
∼= RP1.

Want to look at Kulkarni limit set ΛKul(G ).

This is the union of all projective lines tangent to ∂H2
C at points in

ΛCG (G ) = ∂H2
R.



Not as simple as C-Fuchsian case: In that case all lines were
confocal.

Now each point in interior of Möbius stripM := P< \H2
R is the

meeting point of exactly two lines in ΛKul(G ).
HenceM⊂ ΛKul(G ).

What else we have in ΛKul(G )?

Need to determine when a projective line in CP2 is tangent to ∂H2
C

at a point in ∂H2
R.

i.e. Want to characterise 2-planes in C2,1 which give rise to
projective lines tangent to ∂H2

C, particularly –but not only– at
points in ∂H2

R.

Use Hermitian cross product � : C2,1×C2,1 → C2,1 (Bill Goldman)



Can be defined by:z1
z2
z3

�
w1
w2
w3

 =

z3w2 − z2w3
z1w3 − z3w1
z1w2 − z2w1

 .

For every λ, µ ∈ C∗ and for every z, w ∈ C2,1 one has:

(λz)� (µw) = λµ (z�w) .

Alternating form, bilinear, except that scalars act via their complex
conjugate.

If z and w are L. D. ⇒ � = (0, 0, 0)

If z and w are L. I. ⇒ � is a vector orthogonal to both z and w.



Theorem
1. ΛKul is a 3-dimensional semi-algebraic set defined by:
〈iz� z, iz� z〉 = 0 and |z1|2 + |z2|2 ≥ |z3|2.

2. Its singular set is the Möbius stripM := P< \H2
R. Away from

it, is a smooth 3-manifold: ΛKul \M actually is a fibre bundle
over ∂H2

R.
(with fibre at each x ∈ ∂H2

R the corresponding sphere Lx
–tangent to ∂H2

C at x– minus the circle Cx := Lx ∩M.)
3. Thence ΛKul \M is diffeomorphic to a disjoint union of two

solid tori S1 × R2.



Thus ΛKul splits CP2 into “pieces"that form the Kulkarni region of
discontinuity ΩKul .

Now we want to describe ΩKul .

Recall one has a partition C2,1 = V− ∪ V0 ∪ V+, where these are
the sets of negative, null and positive vectors for the usual
quadratic form in C2,1.

Similarly, consider function f (z) = 〈iz� z, iz� z〉, one has a
partition of C2,1 into positive, null and negative vectors for f :

U+ = {z ∈ C3 : f (z) > 0} = {z ∈ C3 : iz� z ∈ V+} ,

U0 = {z ∈ C3 \ {0} : f (z) = 0}

= {z ∈ C3 \ {0} : iz� z ∈ V0 or iz� z = 0};

U− = {z ∈ C3 : f (z) < 0} = {z ∈ C3 : iz� z ∈ V−}.



Get induced partition

CP2 = PU+ ∪ PU0 ∪ PU−

One has:

Theorem

The three sets PU+, PU0, PU− are SO+(2, 1)-invariant (and so are
H2

C and the real projective space P<) and:

(i) Limit set is: ΛKul = PU0 \H2
R = PU0 \ PV− .

(ii) Kulkarni discontinuity region is: ΩKul = (PU+ ∪H2
R) ∪ PU−

Now say more about ΩKul .



Set: PU+ ∪H2
R := Ω+ and PU− := Ω−

Thus H2
C ⊂ Ω+ and ΩKul = Ω+ ∪ Ω−

Theorem
1. ∃ natural projection map Π : Ω+ ∪ Ω− → H2

R, an
SO+(2, 1)-equivariant fibre bundle over H2

R with fibre three
disjoint 2-discs (⇒ ΩKul

∼= 3-copies of B4)
2. Fibre over o := [0 : 0 : 1] in Ω+ is the Lagrangian 2-plane

“orthogonal to H2
R within H2

C".
3. Fibre over o := [0 : 0 : 1] in Ω1

−,Ω
2
− are the hemispheres D1

o

and D2
o determined by equator =(z1z2) = 0 in line

So :=
{

[z1 : z2 : 0] : (z1, z2) ∈ C2 \ {(0, 0)}
}
, which is the

projective dual of [0 : 0 : 1].
4. These fibres Lo , D1

o , D
2
o have common boundary the circle

Co = ∂L+
o =

{
[iy1 : iy2 : 0] : (y1, y2) ∈ R2 \ {(0, 0)}

}



We get:

Corollary
• For every lattice G ⊂ SO+(2, 1) acting on CP2 via the inclusion
SO+(2, 1)→ SU(2, 1), the Kulkarni set ΩKul consists of three open
disjoint 4-balls B4, each of these being SO+(2, 1)-invariant.

• This is a complete Kobayashi hyperbolic space, which coincides
with the equicontinuity region of G and it is the largest set where
G -action is properly discontinuous.



REMARKS
1) We know (Gusevskii-Parker) that there are embeddings of the
modular group in PU(2, 1) as a real Fuchsian and as a C-Fuchsian
groups that can be connected by a family of quasi-Fuchsian groups.
It would be interesting to describe what happens with the limit set
and discontinuity region in CP2 in this deformation.

2) Related to following general problem: If G is cofinite in
PU(2, 1), then its action on CP2 \H2

C is minimal.

Assume otherwise that G (is non-elementary and) acts on ∂H2
C

with non-empty region of discontinuity. Many questions, e.g.:

i) What is the largest set in CP2 where action is properly
discontinuous? How many connected components it has?

ii) If we are given a fundamental domain for its action in H2
C. Can

we construct a fundamental domain for its action in CP2? Or at
least on the connected component that contains the ball H2

C?



3) Recall (classical) that if G ⊂ PSL(2,C) is discrete, then its
region of discontinuity in CP1 can have 1, 2 or ∞-many connected
components. What can we say for groups acting on CP2?

I The R-Fuchsian groups above are 1st examples we know
where ΩKul has exactly 3-components.

Now we know examples where the number of connected
components in ΩKul is 0, 1, 2, 3, 4,∞.

I Q: Are these the only possibilities ?
I These are some of the very many questions we cannot yet

answer. Vast field of research waiting to be explored

Now we move to groups which may not be complex-hyperbolic.
Want to go deeper into the dynamics of the limit set.
Need first some words about:
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Classification of elements

Just as in dimension 1, one has the following trichotomy (following
Navarrete et al): An element of PSL(3,C) is

I Elliptic if it has a lifting to SL(3,C) which is diagonalizable
and all eigenvalues have norm 1.

I Parabollic if it has a lifting to SL(3,C) which is not
diagonalizable and all eigenvalues have norm 1.

I Loxodromic otherwise.

It can be shown that this classification can be given in terms of the
limit set (Cano-Loeza): Elliptic iff ΛKul = ∅ orCP2; parabolic iff
ΛKul is connected; loxodromic iff ΛKul has two connected
components (can be two lines or a line and a point).



In particular, each loxodromic element has at least one
attracting or repelling line.

Theorem (Barrera-Cano-Navarrete-Seade)
Let G ⊂ PSL(3,C) be such that the number of lines in general
position in ΛKul(G ) is at least 3. Then :

1. ΩKul(G ) := CP2 \ ΛKul(G ) is the largest open set on which G
acts properly discontinuously, and it coincides with the
equicontinuity region.

2. The limit set ΛKul(G ) is the closure of the set of
repelling-attracting lines of loxodromic elements.

We can also say what happens if the number of lines lying in
general position in ΛKul(G ) is ≤ 2.



The essentially new part in this theorem is the second statement.
The prove is not at all easy.

Key point is proving that if the limit set has at least three lines in
general position, then the group must contain loxodromic elements.

Since elliptic elements are all of finite order and therefore they have
no effect on the limit set, key-step is studying purely parabolic
groups:

Theorem
If G is a purely parabolic group, then its Kulkarni limit set is either
a line or a cone of lines with a common vertex p and base a circle
S1 contained in a projective line. So it has at most two lines in
general position.
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Sullivan Dictionary dimension 2

Rational function acting on P2
C Finitely generated non

with degree at least 2 elementary projective group
Julia set Limit set
Fatou set Ordinary set
Julia set is closed and invariant Limit set is closed and invariant
Julia set is connected Limit set is connected,
Julia set is non empty Limit set is non-empty
? Limit set is the closure of invariant

attractive lines of loxodromic elements
Fatou set is a complete Ordinary set is a complete
Kobayashi hyperbolic space Kobayashi hyperbolic space
Fatou set is a Stein manifold Ordinary set is a Stein manifold
Fatou set is pseudoconvex Ordinary set is pseudoconvex



For more on the foundations of the subject see our monograph
(Progress in Maths. vol. 303, Birkhauser, 2012)
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Thank you very much for your attention

and .....



Congratulations Professor KAMIYA

and

my very best wishes for this new beginning!!!


