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Abstract. Let K be a knot or a non-split link in S3, and let M(K) denote
the 4-manifold ∂(E(K)×D2), where E(K) is the exterior of K. We show that
the TOP surgery obstruction theory works for M(K), i.e. the TOP surgery
sequence S(M(K)) −→ [M(K), G/TOP ] −→ L4(π1(M(K))) is exact.

1. Introduction

In [3], Hegenbarth and Repovš used the controlled surgery exact sequence of
Pedersen-Quinn-Ranicki [6] to show that the surgery obstruction theory works
for certain 4-manifolds without assuming that the fundamental groups are good.
Among their examples are 4-manifolds whose fundamental groups are knot groups.
Let K be a knot, or more generally a link, in S3, and let E(K) dcenote its exterior.
Let M(K) denote the 4-manifold ∂(E(K)×D2). The fundamental group of M(K)
is isomorphic to the fundamental group of E(K), i.e. the knot (or link) group of
K. Hegenbarth and Repovš showed that the surgery obstruction theory works in
the topological category when K is a torus knot. The aim of this article is to show
that their strategy works when K is any knot. Actually it also works when K is a
non-split link, i.e. when no locally-flat sphere in S3 −K separates K.

Theorem 1. The TOP-surgery sequence

S(M(K)) −→ [M(K), G/TOP ] −→ L4(π1(M(K)))

is exact when K is a knot or a non-split link.

The key ingredients of the proof are (1) the construction of a UV 1 control map
p : M(K) → B to a spine B of E(K), (2) the controlled surgery exact sequence
for UV 1 control maps, and (3) the existence of a non-positively curved Riemannian
metric on the knot complement S3−K together with the topological rigidity results
of Farrell and Jones [2].

2. Construction of a UV 1 control map

A proper surjection f : X → Y is said to be UV 1 if, for any y ∈ Y and for any
neighborhood U of f−1(y) in X, there exists a smaller neighborhood V of f−1(y)
such that any map K → V from a complex of dimension ≤ 1 to V is homotopic
to a constant map as a map K → U . A UV 1 map induces an isomorphism on
fundamental groups. See [4] for the detail.

Let K be a knot or a link in S3. In this section, we construct a UV 1 map
p : M(K) → B, where B is a spine of E(K).

Let us recall that a topological ideal triangulation of a space is a method of
glueing ideal tetrahedra (= tetrahedra whose vertices are removed) via topological
identifications of faces and edges to obtain the given space. For example, the figure
eight knot complement can be obtained by glueing two ideal tetrahedra [11,12].
The following seems to be a folklore:
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Theorem 2. The complement S3 −K of any knot/link K in S3 has a topological
ideal triangulation.

An illustration of a proof can be found in [9, §2]. Different arguments can be
found in [10,14].

We use the dual spine B of such a topological ideal triangulation to construct a
UV 1 map M(K) → B.

Figure 1. The dual spine of a tetrahedra.

Fix a topological ideal triangulation of S3 −K. We can construct a dual spine
B inductively as follows: Take one point from each edge; the union of these points
is the dual spine of the 1-skeleton and there is a collapsing map from the 1-skeleton
to the spine. Next, take one point from the interior of each face, and, after uniden-
tifying the edges if necessary, take the join of the point and the the spine of the
boundary. The union of these joins is the spine of the 2-skeleton. The collaps-
ing map of the 1-skeleton extends to the collapsing map of the 2-skeleton to the
spine. Finally, take one point from the interior of each ideal tetrahedra, and, af-
ter unidentifying the faces if necessary, take the join of the point and the spine of
the boundary (Fig. 1). The union of these joins is the desired spine B, and the
collapsing map of the 2-skeleton extends to a collapsing map q : S3 −K → B.

B is also a spine of E(K), and q : S3 − K → B restricts to a collapsing map
q : E(K) → B. We may assume that, for each point x ∈ B, q−1(x) is the join of x
and a finite set A(x) ⊂ ∂E(K).

Next consider the composite map

E(K)×D2 proj.−−−→ E(K)
q−→ B

and define p : M(K) → B to be its restriction to the boundary, as was done in [3].
For each point x ∈ B, p−1(x) is the union of finitely many copies of 2-discs along
the boundary and is simply-connected:

p−1(x) = A(x)×D2 ∪ q−1(x)× S1 ⊂ ∂(E(K))×D2 ∪ E(K)× S1 = M(K) .

Therefore, p is UV 1, and p induces an isomorphism between π1(M(K)) and π1(B) =
π1(E(K)).

Remark. We used an ideal triangulation of S3−K to construct a spine. Actually
we only need to have an ideal cell decomposition, which is easier to construct. This
construction will be discussed in §5
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3. Surgery sequences and assembly maps

The strategy of Hegenbarth and Repovš [3] is to use the controlled surgery theory.
Since the map p : M(K) → B is UV 1, there is a commutative diagram

Sε,δ(M(K); p) −−−−→ [M(K), G/TOP ] −−−−→ Lc
4(B; p)

F

y
∥∥∥

yF

S(M(K)) −−−−→ [M(K), G/TOP ] −−−−→ L4(π1(M(K)))

for sufficiently small ε À δ > 0. The first row is the controlled surgery sequence with
trivial local fundamental groups and is exact [6]. The second row is the ordinary
surgery sequence we are interested in. The two vertical maps labeled F are the
forget-control maps. Lc

4(B; p) is the controlled L-group of p : M(K) → B. It is
defined to be the limit of (ε,δ)-controlled L-groups [7]. Note that, if F : Lc

4(B; p) →
L4(π1(M(K))) is injective, a simple diagram chase shows that the second row is
exact.

We will identify F : Lc
4(B; p) → L4(π1(M(K))) with the assembly map A :

H4(E(K);L) → L4(π1(E(K))) [8,13]. Here L is the simply-connected surgery
spectrum L•(Z), whose homotopy groups πi(L) are the 4-periodic surgery ob-
struction groups Li(1) of the trivial group for i ∈ Z. Actually the 0-periodic one
L• = L•〈0〉(Z) and the 1-periodic one L• = L•〈1〉(Z) both give the same homology
group in this dimension, because dimE(K) < 4.

Since this assembly map is an isomorphism when K is a knot or a non-split link
[1], we can obtain the main theorem. The argument given in [1] will be reviewed
in the next section.

Recall that there is actually a functor L from spaces to spectra so that πi(L(X)) ∼=
Li(π1(X)), and the simply-connected surgery spectrum L can be thought of as
L(X), for any simply-connected space X; e.g. L = L({∗}).

We can apply this functor L( ) ‘fiberwise’ to p, and define sheaf homology
groups H∗(B;L(p)). Since p is UV 1, the controlled L-group Lc

4(B; p) is isomor-
phic to the homology group H4(B;L(p)). Under this identification, the forget-
control map F : Lc

4(B; p) → L4(π1(M(K))) can be identified with the assembly
map A : H4(B;L(p)) → L4(π1(M(K))). Now the commutative diagram

M(K)
p−−−−→ B

p

y
y1

B −−−−→
1

B

induces a homomorphism

H4(B;L(p)) → H4(B;L(1 : B → B)) = H4(B;L).

This is an isomorphism, since p is UV 1. On the other hand p induces an isomor-
phism

L4(π1(M(K))) = π4(L(M(K))) → π4(L(B)) = L4(π1(B)),
and we can identify the assembly map A : H4(B;L(p)) → L4(π1(M(K))) with
the assembly map A : H4(B;L) → L4(π1(B)). Finally the homotopy equivalence
q : E(X) → B induces an identification of this assembly map with the assembly
map A : H4(E(X);L) → L4(π1(E(X))).

Remark. In [6], the homology group H4(B;L) is used as the controlled surgery ob-
struction group. The description above makes it easier to check the commutativity
of the diagram given at the beginning of this section.
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4. Geometry of S3 −K and assembly maps

In [1], Aravinda, Farrell and Roushon calculated the L-groups of knot and link
groups. In the process, they proved the following:

Theorem 3. If K is a knot or a non-split link, then the assembly map A :
Hi(E(X);L) → Li(π1(E(X))) is an isomorphism for every i ∈ Z.

As was mentioned in the previous section, this theorem finishes the proof of our
main theorem. We will review their argument in the rest of this section.

By a work of Leeb [5], S3−K has a complete Riemannian metric of nonpositive
curvature when K is a knot or a non-split link. The double D(K) of E(K) inherits
a metric of non-positive curvature. Then the topological rigidity result of Farrell
and Jones [2] can be applied to D(K), and we obtain

S(D(K)×Dn rel ∂) = {∗} (n ≥ 2).

This implies the vanishing of the algebric structure groups [8]:

Sn+4(D(K)) ∼= Sn+4(D(K)×Dn) ∼= S(D(K)×Dn rel ∂)

for n ≥ 2. Since E(K) is a retract of D(K), the algebraic structure groups Si(E(K))
are all trivial for i ≥ 6. In these dimensions, Si(E(K)) are equal to the 4-periodic
algebraic structure groups Si(Z, E(K)). By the 4-periodicity, the structure groups
Si(Z, E(K)) are trivial for all i ∈ Z. These 4-periodic algebraic structure groups
fit into the algebraic surgery exact sequence

· · · → Si+1(Z, E(K)) → Hi(E(K);L) A−→ Li(π1(E(K))) → Si(Z, E(K)) → . . .

of Ranicki, where the map A is the assembly map. Therefore the assembly maps
are isomorphisms for all i ∈ Z.

5. Ideal cell decomposition of S3 −K

In §2, we used an ideal triangulation of S3 −K to construct a spine B. In this
section we discuss an alternative method that uses an ideal cell decomposition.

Identify S3 with S2×(−∞,∞)∪{±∞}, and consider a knot projection to S2×0,
with n crossings. We assume that K stays in S2 × 0 except at the overcrossings as
shown in Fig. 2.
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Figure 2. The knot projection.
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Figure 3. The dual graph.

Consider the dual graph of the knot/link diagram (Fig. 3). The dual graph and
the knot/link diagram together decompose S2 × 0 into 4n-many quadrangles Ri.
One such quadrangle is indicated in Fig. 3. Roughly speaking, Ri × (−∞,∞)−K
(Fig. 4) are the desired ideal 3-cells.

Unfortunately their union is not S3 − K, but S3 − {±∞} − K. So pick an
intersection point of K and the dual graph, and dig tunnels from that point to ±∞
along the edges. This affects four of the 3-cells (Fig. 5), and gives a decomposition
of S3 −K into ideal cells. The dual spine of this ideal cell decomposition can be
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Figure 4. An ideal 3-cell.
Figure 5. A modified
ideal 3-cell.

defined in the same way as in §2, and this can be used to construct a desired UV 1

map M(K) → B.
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