A Generalization of Ohkawa's Theorem

By Carles Casacuberta

University of Barcelona

Joint work with Javier J. Gutiérrez and Jiří Rosický (2014)

Nagoya, 29 August 2015

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Summary of the Article

Abstract

A theorem due to Ohkawa states that the collection of Bousfield equivalence classes of spectra is a set. We extend this result to arbitrary combinatorial model categories.

A model category (in the sense of Quillen) is **combinatorial** if it is **locally presentable** and **cofibrantly generated**.

(日) (日) (日) (日) (日) (日) (日)

Locally Presentable Categories

Locally presentable categories were first considered by Gabriel and Ulmer in 1971.

For a cardinal λ , a small category \mathcal{K} is λ -filtered if the following two conditions are satisfied:

- Given any set of objects {k_i | i ∈ I} with |I| < λ, there is an object k and a morphism k_i → k for each i ∈ I.
- Given any set of parallel arrows {α_j: k → k' | j ∈ J} where |J| < λ, there is a morphism γ: k' → k" such that γ ∘ α_j is the same morphism for all j ∈ J.

(日) (日) (日) (日) (日) (日) (日)

Locally Presentable Categories

Let λ be a regular cardinal.

An object *X* of a cocomplete category C is λ -presentable if the functor C(X, -) preserves λ -filtered colimits; that is,

 $\mathcal{C}(X,\operatorname{colim}_{k\in\mathcal{K}}Y_k)\cong\operatorname{colim}_{k\in\mathcal{K}}\mathcal{C}(X,Y_k)$

for every λ -filtered category \mathcal{K} and every diagram $Y \colon \mathcal{K} \to \mathcal{C}$.

Examples:

- A set X if λ -presentable if and only if $|X| < \lambda$.
- A group G is λ-presentable if it admits a presentation G = ⟨X | R⟩ where |X| < λ and |R| < λ.</p>

Locally Presentable Categories

A cocomplete category C is **locally** λ -presentable if the isomorphism classes of λ -presentable objects form a set and every object of C is a λ -filtered colimit of λ -presentable objects.

A category is **locally presentable** if it is locally λ -presentable for some regular cardinal λ .

Examples:

- The category of sets is \aleph_0 -presentable.
- Every functor category from a small category to a locally λ-presentable category is locally λ-presentable.
- The category of simplicial sets is \aleph_0 -presentable.
- The category of symmetric spectra over simplicial sets is \aleph_0 -presentable.

Cofibrantly Generated Model Categories

A **model category** is a category \mathcal{M} equipped with collections of **weak equivalences**, **fibrations**, and **cofibrations** that satisfy Quillen's axioms. We assume functorial factorizations.

A model category \mathcal{M} is **cofibrantly generated** if there are two sets of maps *I* (called **generating cofibrations**) and *J* (called **generating trivial cofibrations**) such that

- the domains of maps in I are small for I-cellular maps;
- the domains of maps in J are small for J-cellular maps;
- ► the fibrations in *M* are the maps with the right lifting property with respect to *J*;
- ► the trivial fibrations in *M* are the maps with the right lifting property with respect to *I*.

Combinatorial Model Categories

A model category is **combinatorial** if it is cofibrantly generated and the underlying category is locally presentable.

Dugger proved in 2001 that a model category is combinatorial if and only if it is Quillen equivalent to a left Bousfield localization of a category of diagrams of simplicial sets equipped with the projective model structure.

(ロ) (同) (三) (三) (三) (○) (○)

Examples:

- Simplicial sets
- Symmetric spectra over simplicial sets
- Motivic spaces and motivic spectra
- Module spectra over a ring spectrum
- Chain complexes of modules over a ring

Combinatorial Model Categories

If a model category M is combinatorial, then there are arbitrarily large regular cardinals λ with the following properties:

- The category \mathcal{M} is locally λ -presentable.
- There are sets of generating cofibrations and generating trivial cofibrations in *M* whose domains and codomains are λ-presentable.
- There are fibrant and cofibrant replacement functors on M that preserve λ-filtered colimits.

(ロ) (同) (三) (三) (三) (○) (○)

• The terminal object of \mathcal{M} is λ -presentable.

Such a choice of items will be called a λ -combinatorial structure on \mathcal{M} .

Let \mathcal{M} be a model category with a λ -combinatorial model structure for a regular cardinal λ . Let *I* be the given set of generating cofibrations, and let *R* be the given fibrant replacement functor. Let 0 denote the terminal object of \mathcal{M} .

An object *X* of \mathcal{M} is **contractible** if the unique morphism $X \rightarrow 0$ is a weak equivalence.

For a functor $H: \mathcal{M} \to \mathcal{M}$, an object X of \mathcal{M} is called *H***-acyclic** if *HX* is contractible.

Let $\mathcal{A}(H)$ denote the collection of all *H*-acyclic objects in \mathcal{M} .

Let \mathcal{M} be a model category with a λ -combinatorial model structure. Choose a set \mathcal{S} of representatives of all isomorphism classes of λ -presentable objects in \mathcal{M} .

Suppose given a functor $H \colon \mathcal{M} \to \mathcal{M}$.

For each triple (σ, A, f) where $\sigma: P \to Q$ is in the set *I* of generating cofibrations of \mathcal{M} and $f: P \to RHA$ is a morphism in which $A \in S$, let $T_H(\sigma, A, f)$ denote the set of all morphisms $t: A \to B$ where $B \in S$ and for which there exists $g: Q \to RHB$ such that $RHt \circ f = g \circ \sigma$.

(日) (日) (日) (日) (日) (日) (日)

Denote

 $T(H) = \{T_H(\sigma, A, f) \mid \text{all such triples } (\sigma, A, f)\}.$

Theorem Let \mathcal{M} be a model category with a λ -combinatorial structure for a regular cardinal λ . Let H_1 and H_2 be functors $\mathcal{M} \to \mathcal{M}$ that preserve λ -filtered colimits. If $T(H_2) \subseteq T(H_1)$ and the terminal object of \mathcal{M} is H_2 -acyclic, then $\mathcal{A}(H_1) \subseteq \mathcal{A}(H_2)$.

Proof It is essentially the same argument as in Ohkawa's article about elementary equivalence classes of spectra.

Corollary If a model category \mathcal{M} admits a λ -combinatorial structure for a regular cardinal λ , then there is only a set of distinct acyclic classes $\mathcal{A}(H)$ where H runs over all functors $\mathcal{M} \to \mathcal{M}$ that preserve λ -filtered colimits and such that the terminal object is H-acyclic.

Proof If $\{H_i \mid i \in I\}$ is any collection of such functors, then each $T(H_i)$ is a set of subsets of the union of $\mathcal{M}(A, B)$ for all $A, B \in S$.

Therefore, the cardinality of the set of acyclic classes $\mathcal{A}(H)$ is bounded by $2^{2^{\kappa}}$ where κ is the cardinality of the set of morphisms between representatives of all isomorphism classes of λ -presentable objects of \mathcal{M} .

Monoidal Model Categories

Let \mathcal{M} be a **monoidal** model category. The **Bousfield class** of an object *E* is defined as

$$\langle E \rangle = \{ X \in \mathcal{M} \mid E \otimes X = 0 \text{ in Ho}(\mathcal{M}) \}.$$

Theorem If \mathcal{M} is a pointed combinatorial monoidal model category, then the Bousfield classes in \mathcal{M} form a set.

Proof Let λ be a regular cardinal such that \mathcal{M} has a λ -combinatorial structure and let Q be a cofibrant replacement functor that preserves λ -filtered colimits. For each E, let

$$H_E X = QE \otimes QX.$$

Then H_E preserves λ -filtered colimits for all E, since $QE \otimes (-)$ has a right adjoint. Our claim follows since $\langle E \rangle = \mathcal{A}(H_E)$.

Special Cases

- ► For every commutative ring *R* there is only a set of distinct Bousfield classes in the derived category *D*(*R*).
- For every commutative ring spectrum *E* there is only a set of distinct Bousfield classes in the homotopy category of *E*-module spectra.
- For each Noetherian scheme S of finite Krull dimension there is only a set of distinct Bousfield classes in the stable motivic homotopy category SH(S) with base scheme S.
- For every field k of zero characteristic there is only a set of distinct Bousfield classes in the derived category DM(k) of motives over k, i.e., modules over the HZ-spectrum.

Nonadditive Homology Theories

Question

Does Ohkawa's Theorem still hold if we omit representability?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In other words, do the kernels of non necessarily additive homology theories form a set?

Answer

Obviously not.

Homology with Zero Coefficients

The James-Whitehead homology theory is defined as

$$\mathsf{JW}_n(X) = \prod_{i=0}^{\infty} H_i(X) / \oplus_{i=0}^{\infty} H_i(X),$$

for all n, where H_* denotes reduced singular homology.

This theory is not additive, since $JW_n(X) = 0$ for all *n* if *X* is a finite CW complex, while

$$\mathsf{JW}_n(\vee_{k=0}^\infty \mathcal{S}^k) = \prod_{i=0}^\infty \mathbb{Z} / \oplus_{i=0}^\infty \mathbb{Z}$$

is nonzero.

Note that H_* and $H_* \oplus JW_*$ are in the same Bousfield class.

Nonadditive Bousfield Classes

For a collection of elements $a = \{a_i \mid i \in I\}$ in an abelian group *A*, define its **support** and its **content** as

supp
$$a = \{i \in I \mid a_i \neq 0\} \subseteq I$$
;
cont $a = \bigcup_{i \in I} \{a_i\} \subseteq A$.

Example: supp $(1, 1, 1, ...) = \mathbb{N}$ while cont $(1, 1, 1, ...) = \{1\}$.

For each cardinal α , denote $A^{\alpha} = \prod_{i < \alpha} A$ and

$$\mathbf{A}^{<\alpha} = \{(\mathbf{a}_i) \in \mathbf{A}^{\alpha} : |\operatorname{cont}(\mathbf{a}_i)| < \alpha\}.$$

The functor on abelian groups

$$F_{\alpha}A = A^{\alpha}/A^{<\alpha}$$

is exact and satisfies $F_{\alpha}A = 0$ if $|A| < \alpha$ while $F_{\alpha}(\bigoplus_{i < \alpha} \mathbb{Z}) \neq 0$.

Nonadditive Bousfield Classes

Theorem There is a proper class of distinct kernels of nonadditive homology theories.

This is joint work with Pau Casassas and Fernando Muro (unpublished).

Proof For each cardinal α we construct a homology theory h_* such that the CW complexes with less than α cells are h_* -acyclic while there exists a CW complex with α cells which is not h_* -acyclic. Namely, let

$$h_n(X) = F_\alpha H_n(X)$$

where H_* denotes singular homology and $F_{\alpha}A = A^{\alpha}/A^{<\alpha}$.

Note that $h_1(\bigvee_{i < \alpha} S^1) \neq 0$. Thus, such homology theories are in distinct Bousfield classes for distinct cardinals α .

Nonadditive Bousfield Classes

Theorem For each regular cardinal λ there is only a set of Bousfield classes of (non necessarily additive) homology theories that commute with λ -filtered colimits.

Proof This is shown in the same way as Ohkawa's Theorem.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>