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1. Nukaga’s theorem on the area of lattice polygons

This is an excerpt of our survey article [2] on formulae of the area of lattice polygons
and the volume of lattice polyhedra. More specifically we give a proof of a Nukaga’s
theorem [1] which gives a method of computing the area of lattice polygons. The
area of a lattice polygon X will be denoted S(X).

Definition 1.1. The lattice frame F is the union of the horizontal lines and
vertical lines which go through lattice points. A lattice square whose edges have
length 1 is called a unit square, and its boundary is called a a unit frame. The
subsets obtained by cutting a lattice polygon X along the lattice frame are called
pieces of X; i.e. a piece is the topological closure of a connected component of
X \ F . A piece P have several edges, and the number of edges that are slant (i.e.
neither horizontal nor vertical) is called the type of P . There are no pieces with
type greater than 2. See the remark at the end of this section. The pictures below
are examples of pieces. The types are 0, 1, and 2 from left.

Definition 1.2. For a lattice polygon X, the number of its type 0 pieces is denoted
m(X), and the number of its type 1 pieces is denoted n(X). The Nukaga number

N(X) of X is defined by N(X) = m(X) +
n(X)

2
.

The area of a type 0 piece is 1. On the other hand, the area varies from piece to
piece when the type is 1 or 2. The Nukaga number N(X) of a lattice polygon X
can be thought of as an estimate of its area S(X) obtained by regarding the area
of type 1 pieces to be 1

2 and the area of type 2 pieces to be 0, but surprisingly it
turns out that N(X) is exactly equal to A(X)!

Theorem 1.3 (Nukaga’s Theorem). For each lattice polygon X, the equality S(X) =
N(X) holds.

Example 1.4. In the lattice polygon below, there are two type 0 pieces (painted
red), eleven type 1 pieces (painted yellow), and two type 2 pieces (painted green).

Therefore its Nukaga number is 2 +
11
2

= 7.5 and is equal to the area.

We first prove the theorem for lattice trainagles. For a lattice polygon with more
than three vertices, we split it using a diagonal into polygons with fewer vertices
and use induction. Here a diagonal is a line segment connecting two vertices that
meet the boundary only at the ends. Although the fact that any polygon has a
diagonal and that it can be split into triangles by diagonals is well-known, but we
review its proof since we will need to extend this result to a more general situation.

1http://www.das.ous.ac.jp/masayuki/blogn/
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Proposition 1.5. If n = 4 , then any n-gon has a diagonal.

Proof. Let Y be the convex hull (i.e. the smallest convex set containing X) of the
given n-gon X. Y is also a plolygon. Choose a vector ~a which is not perpendicular
to any of the edges of Y . Then there is a unique vertex v of X which lies farthest
in the direction of the vector ~a. Let u and w be the two vertices of X next to v. If
the line segment uw lies in the interior of X except for the endpoints, then it is a
diagonal of X. If not, then there exist vertices of X in the interior of 4uvw or on
the interior of the linesegment uw. Let v′ be the farthest from the line uw among
them. Then vv′ is a diagonal of X. ¤
Proposition 1.6 (Additivity of Nukaga numbers). If we split a lattice polygon
X into two lattice polygons A and B by a diagonal, then the equality N(X) =
N(A) + N(B) holds.

Proof. Let l be the diagonal which cuts X into A and B. If l is either horizontal
or vertical, there are no changes of the pieces and the equality is obvious. So let us
assume that l is neither horizontal nor vertical. If l passes through the interior of
a piece P of X, then P is split into pieces PA, PB of A, B respectively. There are
three possible cases:

(1) if P is of type 0, then both PA, PB are of type 1.
(2) if P is of type 1, then one of PA, PB is of type 1, and the other is of type 2.
(3) if P is of type 2, both PA, PB are of type 2.

Theefore the desired equality holds. ¤
Proposition 1.7. If a lattice polygon X has only pieces of type 0, then S(X) =
N(X).

Proof. Let m be the number of the pieces of X. Then obviously S(X) = m =
N(X). ¤
Proposition 1.8. If X is a lattice triangle with a horizontal edge and a vertical
edge, then S(X) = N(X).

�
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Proof. The triangle X is a right triangle. Rotate it 180 deg around the midpoint
of its hypotenuse to obtain a right triangle Y , and let Z be the union of X and Y .
By the symmetry of Z and the additivities of S( ) and N( ), we have the following
equalities:

S(X) = S(Y ) =
S(Z)

2
, N(X) = N(Y ) =

N(Z)
2

.

Proposition 1.7 applies to Z, and we have S(Z) = N(Z); therefore, we obtain
S(X) = N(X). ¤
Proposition 1.9. Nukaga’s theorem holds for any lattice triangle.

Proof. For each edge γ of X, construct a right triangle outside of X whose hy-
potenuse is γ and the other edges are horizontal or vertical as in the picture below.
Let A, B, C be the three of them. If the edge being considered is either horizontal
or vertical, then the edge itself is regarded to be a degenerate right triangel and its
area and its Nukaga number are both assumed to be 0. Let Y be the union of X,
A, B, C.
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Now we have the following equality:

S(Y ) = S(X) + S(A) + S(B) + S(C) .

And, by the additivitiy of Nukaga number, we have the following:

N(Y ) = N(X) + N(A) + N(B) + N(C) .

Since Y is lattice polygon with only pieces of type 0, we can apply Proposition 1.7
to Y , and we have

S(Y ) = N(Y ) .

On the other hand, by Proposition 1.8, we have the equalities

S(A) = N(A), S(B) = N(B), S(C) = N(C) .

S(X)=N(X) follows from these. ¤

Now we are ready to prove Nukaga’s theorem for an arbitrary lattice polygon.
Let n be the number of vertices. The n = 3 case was handled in Proposition 1.9.
So, let us assume that Nukaga’s theorem is true for 3 5 n 5 k, and let us consider
the case when n = k+1 (k = 3). A given lattice (k+1)-gon X can be split into two
lattice polygons A, B by a diagonal. The numbers of vertices of A, B are both less
than or equal to k, and so, by induction hypothesis, the equalities S(A) = N(A),
A(B) = N(B) hold. On the other hand, by additivity, we have S(X) = S(A)+S(B)
and N(X) = N(A) + N(B). Therefore we obtain S(X) = N(X), and Nukaga’s
theorem is proved.

Remark. To see that there are no pieces of type greater than 2, first note that the
slopes of the slant edges of a piece are either all positive or all negative. Suppose
that a piece has a positive slope edge e and a negative slope edge f . They cannot
meet the same edge of the unit square, because such a situation forces the relevant
edges of the polygon to meet at a non-lattice point. The endpoints of the edge e
may lie either on the neighboring edges or on the opposite edges of the unit frame
as shown in the figures below.

The endpoints of f cannot lie on the red edges of the unit frame, so they have to lie
on the black edges of the unit frame. But this forces the edge f to have a negative
slope in the first case, and forces f to meet e at an interior point in the second case;
and we have contradictions.

So, let us assume that all the slant edges have positive (or negative) slopes. Since
they possibly meet only at endpoints, they are aligned from top to bottom, and, if
there are more than one edge, the top two edges together with a subset of the unit
frame form the boundary of a piece; so there cannot be a third edge.

2. Nukaga’s theorem for lattice polygons with holes

Nukaga’s theorem is known to hold also for lattice polygons with holes, and we give
a proof of this in this section. Here a lattice polygon with holes is a set obtained
from a lattice polygon, say Y , by removing the interiors of mutually disjoint lattice
polygons lying in the interior of Y . The Nukaga number N(X) of a lattice polygon
X with holes is defined by

N(X) = m(X) +
n(X)

2
,

where we cut X into pieces using the lattice frame as before and define m(X) and
n(X) to be the numbers of pieces of type 0 and 1.

Theorem 2.1. For an arbitrary lattice polygon X with holes, its area S(X) is equal
to the Nukaga number N(X).
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The strategy of the proof is the same as in the case of poloygons. We can show
that any lattice polygon X with holes has a diagonal as before. But, contrary to the
polygon case, a cut of X along a diagonal may not split it into two lattice polygons
with holes. There are two cases:

(1) The endpoints of the diagonal lie on the same boundary component.
(2) The endpoints of the diagonal lie on different boundary components (as

below).

In the first case, X splits into two figures, and in the second case it does not. To
carry out an inductive argument we need to introduce a new notion.

Definition 2.2. A “figure”2 obtained from a lattice polygon with holes by perform-
ing cutting operation along a diagonal connecting different boundary components
finitely many times is called a lattice polygon with holes and cuts. A cut-
ting operation along such a diagonal connects the two boundary components as in
the picture above. The complexity of a lattice polygon with holes and cuts X
is defined to be the pair (k(X), v(X)) of the number of the boundary components
k(X) and the number of vertices v(X) of X. We give the lexicographic order to
the complexities. In the case of the example above, the complexity is (3, 17) before
the cut operation, and is (2, 17) after the cut operation.

Theorem 2.3 below follows immediately from the observations below, and The-
orem 2.1 is a corollary to this.

(1) Any lattice polygons with holes and cuts that has more than three vertices
has a diagonal. The proof is the same as in the case of polygons.

(2) If a cut of a lattice polygon X with holes and cuts along a diagonal splits X
into A and B, then N(X) = N(A) + N(B) and the complexities of A and
B are strictly smaller than that of X, because the numbers of boundary
components are less than or eaual to that of X and the number of vertices
are strictly smaller than that of X.

(3) If a cut of a lattice polygon X with holes and cuts along a diagonal does
not split X, then the Nukaga number does not change and the complexi-
tiy becomes strictly smaller because the number of boundary components
decreases.

(4) A cut operation along a diagonal does not increase the number of vertices.
Therefore, after a finitly many cut operations, a lattice polygon with holes
and cuts is changed to lattice polygons, for which Nukaga’s theorem is
known to hold.

Theorem 2.3. For any lattice polygons with holes and cuts, its area S(X) is equal
to its Nukaga number N(X).
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2The two edges introduced by a cut along a diagonal are overlapping each other, and so it is

not a subset of the plane. We can avoid this difficulty if we use “open” polygons (with holes)
instead of the usual “closed” polygons (with holes).


