SMITH SET FOR A FINITE PERFECT GROUP

TOSHIO SUMI

Abstract. Let G be a finite group. Two G-modules U and V are called Smith equivalent if there is a smooth action on a sphere with just two fixed points x and y such that U (resp. V) is equivalent to the tangential G-module over x (resp. y). A Smith set $Sm(G)$ is a subset of the real representation ring $RO(G)$ consisting of all $U - V$ such that U and V are Smith equivalent G-modules.

Now we let G be a finite perfect group. It is completely known a perfect group G so that $Sm(G)$ is not trivial. Let $P(G)$ be the set of subgroups of G of prime power order and $P_{\text{odd}}(G)$ the set of subgroups of odd prime power order. Further let $RO(G)_P^{(G)}$ be the subgroup of $RO(G)$ consisting of $U - V$ with $\dim(U) = \dim(V)$. For a set \mathcal{F} of subgroups of G, we denote by $RO(G)_\mathcal{F}^{(G)}$ the subgroup of $RO(G)_P^{(G)}$ consisting of $U - V$ such that U and V are isomorphic as a P-module for any $P \in \mathcal{F}$. Then $RO(G)_{P(G)}^{(G)} \subset Sm(G) \subset RO(G)_{P_{\text{odd}}(G)}^{(G)}$. Further if a finite perfect group G has no element of order 8 then $Sm(G) = RO(G)_{P(G)}^{(G)}$. In this talk we treat finite perfect groups G of small order and discuss whether $Sm(G) = RO(G)_{P(G)}^{(G)}$.

Faculty of Design, Kyushu University, Shiobaru 4-9-1, Fukuoka, 815-8540, Japan
E-mail address: sumi@design.kyushu-u.ac.jp

2000 Mathematics Subject Classification. 57S17, 20C15.
Key words and phrases. Smith equivalent, real representation space, perfect group.