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Abstract. In this article we explain the equivariant surgery obstruction

group with middle dimensional singular set and hypercomputability of

this group.

1. Introduction

In this article we describe an equivaraint surgery theory under the ‘weak gap

condition’ obtained in joint research with Anthony Bak.

Throughout this paper, let G be a finite group and let S(G) denote the set of all

subgroups of G. Let X be a compact smooth G-manifold X of dimension n. The

singular set Xsing of X is the subset
∪

g∈Gr{e}X
g of X and the free part Xfree of

X is the complement of Xsing in X. Let Π̂(G,X) denote the set of all connected

components of the fixed point manifolds XH , where H runs over the set S(G).

A precise definition of Π̂(G,X) will be given in the next section. The underlying

manifold of an element t in Π̂(G,X) is denoted by Xt. The map ρX : Π̂(G, X) →
S(G) is defined by

ρX(t) =
∩

x∈Xt

Gx

where Gx is the isotropy subgroup at x in the G-manifold X. Clearly Π̂(G,X)

inherits a G-action from X. For an integer i, let Π̂(G,X, i) denote the subset of

Π̂(G,X) consisting of all t such that dim Xt = i.
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If X is a connected, oriented smooth G-manifold then we have the orientation

homomorphism wX : G → {±1} associated with X, namely wX(g) = 1 if and only if

g : X → X is orientation preserving. The group ring Z[G] has the (anti-)involution

− defined by (∑
g∈G

agg

)−
=
∑
g∈G

wX(g)agg
−1,

where ag are integers.

We say that X satisfies the weak gap condition (resp. gap condition, strong gap

condition) for {e} if 2 dim Xg ≤ n (resp. 2 dim Xg + 1 ≤ n, 2 dim Xg + 2 ≤ n) for

any g ∈ G with g ̸= e. Equivariant surgery theories under the strong gap condition

and the gap condition are discussed in, for example, [18] and [9, 10], respectively.

In [9, 10], the set

QX = {g ∈ G | g2 = e g ̸= e, dim Xg = [(dim X − 1)/2]},

where [r] denotes the greatest integer not exceeding r, has the role of generating a

quadratic form parameter: namely

Λ(QX) = {x − (−1)kx | x ∈ Z[G]} + Z[QX ]

is a form parameter in the sense of [1]. It was found in [9] that the surgery obstruction

group under the gap condition {e} depends on Λ(QX).

To discuss the essential part of our equivariant surgery theory under the weak gap

condition for {e}, let us assume dim X = n = 2k (even) ≥ 6. Under this assumption,

we set ΘX = Π̂(G,X, k). Then ΘX is the disjoint union of ΘX,+ = Θ+(G,X) and

ΘX,− = Θ−(G, X) such that

ΘX,+ = {t ∈ ΘX | Xt is orientable},

ΘX,− = {t ∈ ΘX | Xt is nonorientable}.

If X is a compact smooth G-manifold, we denote by Θ̃X,+ = Θ̃+(G,X) the set of

all generators in Hk(Xt, ∂Xt; Z) ∼= Z, where t runs over ΘX,+. If ω is a generator in

Hk(Xt, ∂Xt; Z) then so is −ω. Thus we have a bijection from Θ̃X,+ to ΘX,+ ×{±1}.
In addition, Θ̃X,+ has a canonical {±1}-action. Furthermore, we can give a G-action

to Θ̃X,+ so that the projection map πX : Θ̃X,+ → ΘX,+ is G-equivariant. Set

SX = {g ∈ G | g2 = e, g ̸= e, dim Xg = k}.
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Note that this set is also determinded by ρX : ΘX → S(G). We assign the datum

DX = (G, (−1)k, wX , πX : Θ̃X,+ → ΘX , ρX : ΘX → S(G), QX)

to a compact, connected, oriented, smooth G-manifold of dimension n = 2k ≥ 6

satisfying the weak gap condition for {e}. Note that if X satisfies the strong gap

condition or the gap condition for {e} then DX is essesentially the datum

(G, (−1)k, wX) or (G, (−1)k, wX , QX), respectively.

By [4], the datum DX provides a Witt group ∇W (DX)proj and this group is the

surgery obstruction group under the weak gap condition for {e}. In the case

where X fulfills the strong gap condition or the gap condition for {e} then the

group ∇W (DX)proj coincides with a Wall group Lh
n(Z[G], w)proj or a Bak group

Wn(Z[G], Λ(QX), w)proj, respectively. The group ∇W (DX)proj consists of equiva-

lence classes of tuples (M, B, q,ααα) such that M is a finitely generated projectve

Z[G]-module, B is a nonsingular (−1)k-Hermitian form M ×M → Z[G], q is a gen-

eralized quadratic form M → Z[G]/(Λ(QX)+Z[SX ]), and ααα is a pair consisting of a

G × {±1}-map α̃+ : Θ̃X,+ → M and G-map α : ΘX → M/2M making the diagram

Θ̃X,+

α̃+ //

πX

��

M

��
ΘX α

// M/2M

commutative. We will give the precise definition of ∇W (DX)proj in Section 3.

A G-framed map fff = (f, b) of degree one is a pair consisting of a degree one

G-map f : (X, ∂X) → (Y, ∂Y ), where X and Y are compact, connected, oriented,

smooth G-manifolds and a G-vetor bundle isomorphism b : T (X) ⊕ f ∗η → f ∗ξ,

where T (X) is the tangent bundle of X and ξ, η are real G-vector bundles over Y .

Theorem 1.1 ([4]). Let fff = (f, b) be a G-framed map of degree one as above.

Suppose the following coniditons are satisfied.

(1) dim X = dim Y = n = 2k ≥ 6 is even.

(2) X satisfies the weak gap conditon for {e}.
(3) dim(Xt ∩ Xt′) ≤ k − 2 for all t ∈ Π̂(G,X, k) and t′ ∈ Π̂(G,X, k − 1).

(4) Y is simply connected.
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(5) ∂f : ∂X → ∂Y is Z-homology equivalence.

(6) fP : XP → Y P is a Zp-homology equivalence for any prime p and any

P ∈ S(G) of p-power order ̸= 1.

Then an element σ(fff) in ∇W (DX)proj is assigned to fff = (f, b) so that σ(fff) = 0 if

and only if fff is G-framed cobordant, by G-surgeries on fff relative to the singular set

and the boundary of X, to a G-framed map fff ′ = (f ′, b′) such that the ambient map

f ′ : X ′ → Y is a homotopy equivalence.

Let X be a smooth G-manifold as in the theorem above. For H ∈ S(G), we

obtain the datum

(1.1) DH = (H, (−1)k, wH , πH : Θ̃H → ΘH , ρH : ΘH → S(H), QH)

by setting DH = DresG
HX , wH = wresG

HX , Θ̃H,+ = Θ̃resG
HX,+, ΘH = ΘresG

HX , πH =

πresG
HX , ρH = ρresG

HX , and QH = QresG
HX . By definition, we have

ΘH = {t ∈ ΘG | ρG(t) ∩ H ̸= {e}},

Θ̃H,+ = {ω ∈ Θ̃G,+ | ρG ◦ πG(ω) ̸= {e}},

QH = QX ∩ H.

Set SH = SresG
HX . Then we have

SH = SX ∩ H.

Lemma 1.2. In the above setting and notation, if

(C1) ρG(t) has prime order for each t ∈ ΘG

then the equality

ΘH∩K = ΘH ∩ ΘK

holds for all H, K ∈ S(G).

The next theorem is proved by using results in [19], [6], [1], [2].

Theorem 1.3. Let X be as in Theorem 1.1 and F a subset of S(G) closed with

respect to conjugation and intersections. Suppose F contains all maximal cyclic

subgroups of G. Further suppose X satisfies the following.

(C1) ρG(t) has prime order for each t ∈ ΘG.
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(C2) ΘG × ΘG =
∪

H∈F

ΘH × ΘH .

Then ∇W (DG)proj is F-hypercomputable; in particular,

Ind : lim
→F̃

∇W (D−)proj → ∇W (DG)proj and Res : ∇W (DG)proj → lim
←F̃

∇W (D−)proj

are isomorphisms, where

F̃ = {K ∈ S(G) | ∃ H ∈ F : H E K,K/H has prime power order}.

The reader can obtain basic knowledge of the Burnside ring from [6], [5], [12]. A

finite group G is called an Oliver group if G admits a smooth G-action on a disk

without G-fixed points, cf. [16, 15], [8].

Theorem 1.4. Let G be an Oliver group and let X be as in the above theorem. Let

D be an acyclic finite G-CW complex such that

(C3) the Euler characteristics χ(DK) are equal to 1 for all subgroups K of the

group ⟨ρG(t), ρG(t′)⟩, where t, t′ range over ΘG.

Then the vanishing property

([G/G] − [D])2m+2∇W (DG)proj = 0

holds for the integer m defined by |G| = 2mm′ with odd m′, and where [G/G] and [D]

are the elements in the Burnside ring determined respectively by the finite G-CW

complexes G/G and D.

2. Connected components of fixed point sets

Let X be a finite G-CW complex or a compact smooth G-manifold. According

to [17], we define the G-poset Π(G,X) associated with X by

Π(G,X) =
⨿

H∈S(G)

π0(X
H),

where π0(X
H) is the set of all connected components of the H-fixed point set XH of

X. The map ρ : Π(G,X) → S(G) is defined so that for t ∈ Π(G,H), ρ(t) = H holds

if and only if t ∈ π0(X
H). The underlying space of t ∈ Π(G,X) is denoted by Xt.

The set Π(G,X) inherits a G-action from X, namely for g ∈ G and t ∈ Π(G,H),
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gt is the element having the property ρ(gt) = gρ(t)g−1 and Xgt = gXt. The set

S(G) has the G-action induced by conjugation. It is easy to check that ρ is a G-

map. For two elements t, t′ ∈ Π(G,X), we say t ≤ t′ if and only if Xt ⊆ Xt′ and

ρ(t) ⊇ ρ(t′). For t ∈ Π(G,H), we define t̂ to be the minimal element in Π(G,H)

such that Xt = Xt̂. Then we define the set Π̂(G,X) by

Π̂(G,X) = {t̂ | t ∈ Π(G,X)}.

3. Definition of ∇W (DX)proj

Let X be a compact, connected, oriented smooth G-manifold of dimension n =

2k ≥ 6 satisfying the weak gap condition for {e} and

DX = (G, (−1)k, wX , πX : Θ̃X,+ → ΘX , ρX : ΘX → S(G), QX)

the datum associated with X described in Section 1. We call a tuple MMM = (M,B, q,ααα)

a DX-quadratic module if it satisfies the following.

(1) M is a finitely generated projective Z[G]-module.

(2) B : M × M → Z[G] is a nonsingular (−1)k-Hermitan form. Thus,

(i) B is bilinear over Z,

(ii) B(x, y) = (−1)kB(y, x) for x, y ∈ M ,

(iii) B(x, ay) = aB(x, y) for a ∈ Z[G], x, y ∈ M ,

(3) q : M → Z[G]/(Λ(QX)+Z[SX ]) is a quadratic form associated with B. Thus,

(iv) q(ax) = aq(x)a for a ∈ Z[G], x ∈ M ,

(v) B(x, x) = q̃(x)+(−1)kq̃(x) in Z[G]/Z[SX ] for x ∈ M , where q̃(x) ∈ Z[G]

is a lifting of q(x).

(vi) q(x+ y)− q(x)− q(y) = B(x, y) in Z[G]/(Λ(QX)+Z[SX ]) for x, y ∈ M .

(4) ααα is a pair consisting of a (G × {±1})-map α̃+ : Θ̃X,+ → M and a G-map

α : ΘX → M/2M such that the diagram

Θ̃X,+

α̃+ //

πX

��

M

��
ΘX α

// M/2M

commutes.
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If MMM = (M, B, q,ααα) possesses a stably free Z[G]-submodule L ⊂ M such that

L = L⊥, q(L) = 0, Image(α̃+) ⊂ L and Image(α) ⊂ L/2L (⊂ M/2M), then L is

called a Lagrangian of MMM and MMM is called a null module, where

L⊥ = {x ∈ M | B(x, y) = 0 (y ∈ L)}.

Let Q(DX) denote the category of DX-quadratic modules, where morphisms are

isomorphisms. Then the notion of direct sum on Q(DX) is clear. Thus we have the

Grothendieck group K0(Q(DX)) and the Witt group

W (Q(DX))proj = K0(Q(DX))/⟨null modules⟩.

Let ∇Q(DX) be the full subcategory of Q(DX) consisting of all objects MMM =

(M,B, q,ααα) such that

B(Σs − sx, x) = 0 in Z2[G]/Z2[G r {e}] for s ∈ SX , x ∈ M,

where

Σs =
∑

{α(t) | t ∈ ΘX : ρX(t) ∋ s}.

We obtain the Grothendieck group K0(∇Q(DX)) and the Witt group

∇W (DX)proj = K0(∇Q(DX))/⟨null modules in ∇Q(DX)⟩.

4. Computability property

Let S(G) be the subgroup category defined by J. A. Green [7]: namely its objects

are subgroups of G and its morphisms are triples (H, g, K) such that H, K ∈ S(G)

and g ∈ G such that gHg−1 ⊂ K. Let Ab be the category of abelian groups: namely

its objects are abelian groups and its morphisms are homomorphisms of groups. Let

w : G → {±1} be a homomorphism and G a family of subgroups of G. The notion

of (w,G)-Mackey functor is similar to that of Mackey functor (cf. [13], [11]). A

(w,G)-Mackey functor M = (M∗,M∗) is a bifunctor from S(G) to Ab such that

M∗(H) = M∗(H) (= M(H)) for H ∈ S(G) and the following is satisfied.

(1) c(H,g)∗ = c∗(gHg−1,g−1) for H ∈ S(G) and g ∈ G.

(2) c(H,h)∗ = w(h)idM(H) for H ∈ S(G) and h ∈ H.
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(3) resL
K ◦ indL

H coincides with⊕
KgH∈K\L/H

indK
H∩gHg−1 ◦

(
w(g)c(H∩g−1Kg,g)∗

)
◦ resH

H∩g−1Kg

for L ∈ G, H, K ∈ S(L),

where c(H,g)∗ = M∗(H, g, gHg−1), c∗(H,g) = M∗(H, g, gHg−1), indK
H = M∗(H, e,K),

and resK
H = M∗(H, e, K). In the case w is trivial, a (w,G)-Mackey functor is called

a G-Mackey functor. Moreover in the case G = S(G), a G-Mackey functor is called

a Mackey functor.

Theorem 4.1. Let X be as in Theorem 1.3. Then ∇W (−)proj canonically has

the structure of a Mackey functor: namely there exists a Mackey functor M =

(M∗,M
∗) : S(G) → Ab such that M∗(H) = M∗(H) = ∇W (DH)proj.

Let F be a family of subgroups of G closed under conjugation by all elements in

G and under arbitrary intersections: namely gHg−1 ∈ F for all H ∈ F and g ∈ G,

and H ∩ K ∈ F holds for all H, K ∈ F . A (w,G)-Mackey functor M is called

F -computable if the induction homomorphism

Ind : lim
−→F

M(−) → M(G)

and the restriction homomorphism

Res : M(G) → lim
←−F

M(−)

are both isomorphisms. If U is a set of prime integers then we denote by U ′ the

multplicatively closed subset of integers generated by 1 and all prime integers q /∈ U
dividing |G|. A (w,G)-Mackey functor M is called F -hypercomputable if U ′−1M is

FU -computable for all U as above, where

FU = {K ∈ S(G) | K D H, H ∈ F , K/H has p-power order for some p ∈ U}.
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