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PART 1
81, Background....

Manin (Denninger, Kurokawa, Kapranov-Smironov...) sug-
gested d a curve C = SpecZ “defined over” T, whose “zeta
function”(c(s) is the complete Riemann zeta function (p(s):

1 1
s)=> —= 1] — (R(s) > 1)
n=1 n p: primes p

[(s):= /0OC ¥ e dw (R(s) > 0)

Furthermore, they suggested the Riemann hypothesis may be
solved in a fashion similar to the Weil conjecture for smooth
schemes defined over a finite field F, (¢—1) .

Kato, Kurokawa-Ochiai-Wakayama, Deitmar, Toen-Vaquie,
Haran, Durov, Soulé, Connes-Conani... proposed some simi-
lar notions of F;-schemes.

(commutative rings — commutative monoid with 0)

Deitmar-Kurokawa-Koyama, Kurokawa-Ochiai, Soule, Connes-

Consani proposed different kinds of zeta functions of [F;-schemes.
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| X (Fgn) | = |Y (Z/n) |
!(Spec R) (Fyn) ‘: | Homyings (R, Fyn) ’
’(Spec A)(Z/n) ‘ = ‘ Homgroups (4, Z/n) ‘

§2, The plan of the paper

PART I: (Soule, Connes-Consani) Rough idea of the F;-
schem and the zeta function for some class of F;-scheme.

PART II: (Connes-Consani) A similarity between “the
counting functions” of the “hypothetical C = SpecZ ”
, and an irreducible smooth projective algebraic curve
defined over a finite field.

PART III: (Connes-Consani, Deitmar-Kurokawa-Koyama,
M) F;-zeta functions of Deitmar-Kurokawa-Koyama and
Kurokawa-Ochiai, some invariants for finite abelian groups,
and an expression of the Soule-Connes-Consani zeta
function for general, not necessarily torsion free, Noe-
therian F,-schemes.

83, A rough idea of the F;-scheme
There is a very general theory of F,-scheme, e.g.

[CC] Alain Connes and Caterina Consani,
“Schemes over F) and zeta functions”, ArXiv0903.2024

which employs the functor-of-points philosophy for the cate-
gory Ring Uadjoint NMonoidy .

Monoidy = Ring
Hompny (Z[M], R) = Homononeid, (M, R)
M — Z[M] (0a — Ozan)
R 4R
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Ob (Ring Uadjoint Monoidy) = Ob (Ring) H Ob (Monoidy)

Homgpzng(X,Y) if X)Y € fRing
Homgmmm'do (X, Y) if X,Y € Monoidy
Hom%inguadjoimi)ﬁonoido (X7 Y) = @ if X € %an, Y c mOnO’idO

Homaping(Z[X],Y) if X € Monoidy,Y € Ring
L = Homﬂﬁonoido (Xa Y)

A Fi-functor is by definition a functor
Ring Uadjoint Monoidy — Get,

which is equivalent to the following data:

o X : Monoidy — Get

o X7 :Ring — Get

e ¢: X — Xyof, where (5 : Monoidy — Ring, M — Z[M]| (OM — OZ[M])
(<= e: X op* — Xy, where * : Ring — Monoidy, R— R)

Connes-Consani defined a F,;-scheme X to be a [F;-functor
Ring Uadjoint Monoidy — Set s.t.

e Xy, its restriction to Ping, is a Z-scheme.
e X, its restriction to Monoid,, is a .

e the natural transformation e : X o f* — X, associated
to a field, is a bijection of sets. In particular,

Xz(Fq) <f— (X 08) (Fg) =—= X(Fy) =——= X (F1[2/(q - 1)]) =——= X (F1(s-1)

Homyz_gsch (SpecFy, Xz) Hommtofsch (SpeC]Fl(q,l) 7&)

Here, (lim,,; Fn ~) Fin :=F[Z/nZ] = Z/nZ U {0}

For Noetherian F;-scheme X (both X; and X admit a fi-
nite open cover by Noetherian affine representables in each
category),

(1) there are just finitely many “points” in X.
(2) at each such a point z € X, the “residue field”x(z) =
F, [OX] is a finitely generated abelian group O = Z"(*) x

I1; Z/m;(x)Z
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(3) X(Fln) = HOmMO—sch(SpeC ]Flnai) = Hzel ’
where

(Um Fyn =) Fin =T [Z/nZ] .= Z/nZ U {0}

q—1

In general, a M -scheme X is caleed torsion free , if O is
a torsion free abelian group for any z € X.

84, The zeta function for some class of F;-scheme by Soule,
Connes-Consani

(Deitmar, Cones-Consani) For a Noetherian F;-scheme X with
X torsion free, IN(u+ 1) € Zx[u] s.t.

| X (Fi»)|=N(n+1), YneN
In particular,

}XZ (F,) | = ‘X(Fl(qq)) ‘ = N(q), Vq, a prime power

)‘X(Fw) ‘ = Z | Hommb(O;,Z/nZ)} = Z ’ Hom%(zn(m)7z/nz)‘ _ Z @)

zeX zeX zeX

So, set N(u+1):= erzu"@) € Z>[ul. O

So, we are naively lead to define the zeta faunction of X as
the Hasse zeta function of X, as our first attempt:

C(s,Xz) = [ ¢(s,Xa/Fp),

where ( (s, X;/F,) is the congruence zeta function

C(s,Xz/F,) = exp (Z wpms>

m
m=1

Bad News. (Soule, Deitmar, Kurokawa) When N(v) = N(u+ 1) =
er& u"(ff) = eri un(fﬂ) = Zzez(v - 1)71(.%) = Zi:o akvka (ak S Z)7

d d
C(SaXZ> = HC(S_ k>ak7 C(SvXZ/]FP) - H (1 _pk—s)_‘lk
k=0 k=0
(Too complicated and redundanct for such simple (comparing with C' = Spec Z)
X
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Good News. (Soule, predicted by Manin, corected by Kurokawa) For a
Noetherian Fi-scheme X with X torsion free (so, AN (v) = ZZ:U ap® €
Z[v] s.t. | X (Fin) | =N(n+1), VYneN),

d
Ce(s) := i (5, Xz/Fy) (p = DY = [ (s — )~
k=0
(Kurokawa) for the l-th Betti number b, of Xz /Fp,
d —ay, m b; (_1)l+1
11 (1 - pkp“*) = (s, Xz/Fp) = ] (1= p?)
k=0 =0 \J=1
( )
m —(—1)" .
:H (1 B pfs) (=) . by = apz l: even
- 0 I odd

Thus, N(v) = ZZZO a € Zzo[v], N(1) = ZZZO a, = 3% (=1)'D,
the Euler characterisitc of Xz /F,.

Example (Toric variety)

fan picture: lattice N:: a group N = Z" for some n € N.
convex cone o in Np:: a convex subset 0 C Ng := N ®z R
with R>qo = 0.
A convex cone o is called:
polyhedral:: if it is finitely generated,
rational:: if the generators lie in the lattice IV,
proper:: if it does not contain a non-zero sub vector
space of Ng.
fan A in N:: a finite collection A of proper convex ratio-
nal polyhedral cones ¢ in the real vector space Ny =
N ®7z R s.t.
e every face of a cone in A is in A,
e the intersection of two cones in A is a face of each.
(Here zero is considered a face of every cone.)
monoid picture: dual lattice M:: M := Hom(N,Z)
dual cone ¢ in Mg := Hom(N,R):: 6 :={a € Mg | a(o) = 0}
monoid Ag:: A, := 6 N M; face inclusion 7 € ¢ =
A 2 Ay
affine open U,:: U, := Spec (C[A,]) = Spec (Cl[g N M])
toriv variety Xa:: X is obtained by glueing U, = Spec (C[4,])

along U, — U, for each face inclusion 7 € o
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This construction allows us to define a F;-scheme XA.
(Deitmar) GIvenafan A € N 27", for j =0,1,2,...,n,
let
f; be the number of cones in A of dimsension j, and set

¢ = S fat(~1)*9 (%) Then,

Caals) = J(s =)

0

<

W)= 3w =3 far = 3 foa
reX A k=0 k=0
n n k
G ED DURITEEE DF S ol (4 FIG TS
k=0 k=0 7=0
_ Z 2 Z Fork (k) (_1)k—] 0

Question Can we define (y(s) for more general F;-scheme
X7

Good News. Connes-Consani proposed two solutions.

Solution 1: This proceeds as follows:

e Extend “canonically” N(n+ 1) :=|X (Fi.)|, (n €N) to
N:Rz— R, s.t.3C>0,3keN, s.it. |[N(u)| < Cu”

e As far as zero points and poles concerns, can charac-
terize (y(s) (which is supposed to be (y(s)) by

82?{2? =— /100 N(uw)u*d*u, d'u = du/u
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<q_1>X7 X:N(l)

= lim 0 ZN(qT)

q—1

: (g7)° _
~1 N(g") "t log (¢"
2 (¢)———1log (¢7")

= — lim >1 N(g")(¢") " logg

=~ iiifi N(q")(g")~* (log (¢") — log (¢""))

/ N(u)u=*dlogu = —/ N(u)u*du/u
1

Solution 2: Rather than extending to N : R>; — R, consider

disc(s), whose zero points and poles are characterized by
a CdlSC —5—1
(dlSC Z N
n=1

Good News. (Connes-Consani) For any Noetherian Fi-scheme X,

3h(z), an entire function, s.t.

(N () = G (s) exp (h(2))
Therefore, (%¢(s) and (x(s) have the same zero points and poles in-
cluding multiplicities.

dise(s) may be defined for more general, not necesarily Noetherian,
I\ -schemes...



PART 11

§5, Hypothetical computation of N(n+ 1) = ‘ (Spec Z) (Fqn) ‘
(Connes-Consani)

Using results of Ingham, Connes-Consani observed:

e Regard w(u) = > ., 01"der(p)“p’:rl1 as a distribution on
[1,00).
e Then,
1 1 ,p+1
(1) N(u):=u-— ﬁ’w(u) +1l=u— (;7 <Z order(p) ;f+ 1) +1
pEZ
where the derivative is in the sense of distributions,
enjoys
0s e
(2) . C@(s) :/ N(u)u*sd*u
Ca(s) 1
e The evaluation w(1)“= " lim, ,; w(s) =3 _, order(p)[ﬁ =

%—i— 3+ log% — %’((__11)), plays an essential role in establishing

(2).
Connes-Consani further pointed out the following analogue:

e X an irreducible, smooth projective algebraic curve
over [F,,

hd ’

IX(F)|=q=) o' +1,  q=p,

where o’s are the complex roots of the characteristic

polynomial of the Frobenius on H:(X ® F,,Q,) (¢ # p)
e Expressing these roots in the form a = p?, for p € 7/,

the set of zeros of the Hasse-Weil zeta function of X,

(3) | X(F,)| = q— ) order(p) ¢ + 1.
peZ’
e Now, compare (3) with the formal differantiation of (1):
N(u) ~u— Z order(p)u” + 1
peEZ
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PART 111

§6, Invariants p,.(A) for an abelian group A

For a finite abelian group A, define the
r-th p-invariant u,(A) (r € N) by

14|
fir(A) = |1i\r > ‘ Homg (A, Z/ (kiks - - - k) Z) ‘
ki,....kr=1

u-(A) is essentially the average of the random variable
X (A):Q:=N" =N
(k1 Koy K)o ’Hommb (A, 2] (kiky - k) Z) ‘

when the infinite set ) = N” is given the homogeneous mea-
sure.

— w4 =E[%A)], B[XA)]=m@A) (weN)

The invariants j,.(A) were first considered by Deitmar-Kurokawa-
Koyama and Kurokawa-Ochiai, throuth their study of, what
they call, multiplicative Igusa-type zeta functions of F\-scheme,
which we review by comparing with the Connes-Consani mod-
ified zeta function.

(i) The modified zeta function ({*°(s) for a Noetherian
F,-scheme X, defined and studied by Connes-Consani
[CC] is characterized by the following property:

disc s) .
_% =D X 2m>1 ‘ ‘(m+1) ! (mod. constant N(1))
Cx(s) = eh(z)cgfisc(s) (Cx(s) : Soulé zeta function, h(z) : entire)

(ii) The multivariable (r variable) Igusa type zeta function

Z{Ig"“s“(sl, ...,s,) for a Noetherian F;-scheme X
([DKK] for r = 1 and [KO] for general r € N) is given
by

o
Igusa L —51 —5y
ZE (51,00, 8) = g E ‘ my*teeem

zeX my,- mr2>1



[DKK] Anton Deitmar, Shin-ya Koyama and Nobushige Kurokawa,
“Absolute zeta functions.” Proc. Japan Acad. Ser.
A Math. Sci. 84 (2008), no. 8, 138—-142

[KO] Nobushige Kurokawa and Hiroyuki Ochiai,
“A multivariable Euler product of Iqusa type and its ap-
plications,” Journal of Number Theory, 12 pages,
Available online 10 March 2009.

Analyzing of
o0
Igusa _ § : —s81 —s
ZSpeCIFl[A}(Sl""7S7") = ’ ml ...mr r’
1, ,me>1

some very mysterious looking idnetity of elementary number
theory , which expresses /,(A) in two different ways, was
obtained in the following two cases:

[DKK] r =1 and arbitrary finite abelian group A.
[KO] Cyclic groups A = Z/nZ and arbitray r € N.

I reported a purely elementary proof of some slight gener-
alization of these identities at the Vanderbilt conference in
May, 2009:

[M1] Norihiko Minami,
“On the random variable N" > (ky, ks, ..., k.) — ged(n, k1ks...k,) €
N, ”arXiv:0907.0916.

[M2] Norihiko Minami, “On the random variable N 5 [ +—

ged(l,ny) ged(l, ng)... ged(l, ng) € N,”arXiv:0907.0918.
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Theorem of [DKK] type. For a finite abelian group A = H§:1 (Z/n;Z),

e oo

1 lem(ni,na,...,nk)

= Z ged(l,n) ged(l,ng) - - - ged(l, ng)

lem(ny,ng, ..., ng) —

— H [I)VIL()*"”'*"VP,A’:—l

p‘ lem(na,n2,...,nk)

vpj+1—1
<1_>§ pl/p0+ +Vp,j § pk —J)vp,j—l

l=vp,;

Here, for each prime p | n,

{vp1,vp 2, Vp i1, Vp i} = {ordp(n1), ordy(ne), . .., ordy(nk—1), ord,(ng)}

Vpo = 0< Upl Spo < ... < Upk—1 < Up.k

Set ,H, := ,.,_1C.. Then, we have:

Theorem of [KO] type. Forn,r € N, w € C,

n

ir 7 ged(n ko ky)”
" ki, ,kr=1
[pm _<11_pp; 1) + perdp(m (1) Zz 0 ord,(n)H1 {(1 — p*l)l — (%ﬁ)r (1 _pwfl)l}}
r } (if w#1)
[ | 2210 ord, (n) Hi (1 - %) }
- (if w=1)
Hp\n :(f:ﬁli) +p°rdp(n)( ( ) Zl —0 ord( n)Hl {( _1)l_r -1 _pw—l)l—rH
r } (if w#1)
I | 2210 ordy () Hi (1 - %) }
_ (if w=1)

Corollary [KO]. Forn,r € N,

w(Z/nZ) = 1] [Zr: ordy(n) Hi (1 - %)l]

pln LI=0
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87 Motivation of the rest of talk

When we play with 1,(A), the following questions seem to be
very natural:

e Is there any more conceptual interpretation or descrip-
tion of p,.(A)?

e Is 1,.(A), whose origin is the Igusa-type zeta functions
for F;-schemes of Kurokawa and his collaboratiors, use-
ful to study F;-scheme?

e Is there any relationship between the zeta functions of
Soullé, Connes-Consani, and the Igusa-type zeta func-
tions, which was the orgin of 1,(A)?

88 111(A)and the zeta functions of Soullé, Connes-Consani.

The logarithmic derivative of the deformed modified zeta func-
tion of Soulé type (i5¢(s;w):

w

d]SC , :
05C%™¢(s; w) - _ Z Z ‘ (m+1)"*""  (mod. constant)

Cdlsc S U
rzeX m>1

is a meromorphic function of s with all of its poles simple.

This gives us the following expression of the deformed mod-
ified zeta function of Soulé type:

[M3] Norihiko Minami,
“Meromorphicity of some deformed multivariable zeta
functions for Fyi-schemes, ”arXiv:0910.3879
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)
n(z)w ()

_ eh(s;w) (S _ j)(7(71(?)10)(71)n(m)'11,'—j)

Homgyp (Az,Z/kZ)

where, for each » € X, O = Z"® x [1;Z/m;(2)Z =: 7z x A,
[(z) = lem{m;(x)}, amd h(s;w) is some entire function of s de-
pending upon w € N.

Restricting to the case w = 1 further, we obtain the follow-
ing:

For a Noetherian [}-scheme X, there are some entire func-
tions hy(s), ha(s) s.t.

Ca(s) = €"ICEe(s)

n(zx) p1(Az)
= ¢h2(s) H H(S _ j)(,(ngw))(,l)nmfj) |
veX \ \Jj=0

where, for each r € X, O = 7"® xI1,; Z/m;(z)Z =: 7M@) x A,
N /

Message:

e /;; measures “local contribution of ramification”!.
e locally, torsion does not creat any new singularity.

13



An outline of the proof of the (¥*¢(s;w) formula.

_ Z i ‘ Homygg (O;, Z/mZ) ‘w<m . 1)7371

zeX m=1

(4) == Z ( w) 1)@ e=iy(g)=(s+1-7)

zeX 7=0
U(z)

w Ck+1
% Z’Hommb (AZIHZ/]{:Z)‘ <<S+1_‘7’ I(x) ) ’
k=1

where the Hurwitz zeta function

((s,9) ==Y (n+q)~ (R(s) > 1,R(g) > 0)

n>0

only has a pole of residue 1 at s = 1 Thus, the singularities of (4) are
poles at s = j € Ugex{0,--- ,n(x)} with residue

B Z ng):u (n(j)w) (—1)@v=iy(y ﬁ% ‘ Homyy (A,, Z/kZ) ‘

zeX j7=0

@ (N SN, | Homay (A, Z/kZ)
2. () ‘ i :

n(z)w l(z) v
& (_ (n(m)w) (_1>n(p)w_j) k=1 ‘Hom% (As, Z/KZ) ‘

zeX j=0 ‘7 l(ZE)
paly n(x)w n(z)w—j w
= - EDT ) (ALY
zeX j=0 J
Now the claim follows immediately. 4

§9. The conceptual interpratation of 1 (A).

For any finite abelian group A,
4|

(5) pi(A) = ‘A’Z‘Homm (A, Z/kZ) ‘ ZM

14



If we interpret that - “ = “ L ¢« = “( for an element «

lal oo
of infinite order, we may generalize the definition of y;(A) to
finitely generalized abelian groups, as well as to finite (not

necessary commutative) groups.

Proof of p1(A)= X ,ea ﬁ

4] 41
P Z ‘ Hotmgy (A Z/ZZ)’ W Z’Hom% 7)1, A)‘
a A

|Z 3 ’Epim(Z/zz,C)‘:Vz' > Y [ Bvias(2/12,C)

I=1 cyclic CCA cyclic CCA =1
|A]
1

:m Z z:’1\/Ior10mb((],Z/lZ)‘:|—j1| Z :g: o(1C))

cyclic CCA =1 cyclic CCA

o(C) _
> S Y ameTa
cyclic CCA heHom(Z,A) acA
O
§10, 1,-(A) for general r € N.
) N
For any abelian group A and r € N, we have
!
r—1 1
—( or a H (1 - _>
/ KOr—l(laD tha‘ |:Zl_0 dp(|af) 41 P :|
po(A)=> = =y
el e o
!
r—1
H Z KOT 1 |a| H Z Zl:ﬂ Ordp(|a‘)Hl <1 - %)
o o o
p|14) €4 p|la] \*<4

where KO stands for Kurokawa-Ochiai [KO]:

1 (r=0)
KO, (n) := , l

202 = Ty [Siomati (1= 3) | 21

N
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811, Connes-Consani modified Soulé type zeta function,
again

To recap, let us combine the two theorem:

For a Noetherian [}-scheme X, there are some entire func-
tions hy(s), ha(s) s.t.

Ca(s) = € ICE(s)

n(x) . 2aea, ﬁ
=TT | T =)
zeX 7=0

where, for each = € X, O; = Z"® x [, Z/m;(z)Z =: 2" x A,,
N J

Once again, the above result is in the following:

[M3] Norihiko Minami,
“Meromorphicity of some deformed multivariable zeta
functions for Fy-schemes, ”arXiv:0910.3879

I would like to end this paper with the following question
to transformation group theorists:
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