THE COHOMOLOGY RING OF THE GKM GRAPH OF A FLAG MANIFOLD

大阪市立大学大学院理学研究科 福川由貴子 (Yukiko Fukukawa) Department of Mathematics, Osaka City University

1. INTRODUCTION

Let *T* be a torus of dimension *n* and *M* a closed smooth *T*-manifold. The equivariant cohomology of *M*, denoted $H_T^*(M)$, contains a lot of geometrial information on *M*. Moreover it is often easier to compute $H_T^*(M)$ than $H^*(M)$ by virtue of the Localization Theorem which implies that the restriction map

(1.1)
$$\iota^* \colon H^*_T(M) \to H^*_T(M^T)$$

to the *T*-fixed point set M^T is often injective, in fact, this is the case when $H^{odd}(M) = 0$. When M^T is isolated, $H^*_T(M^T) = \bigoplus_{p \in M^T} H^*_T(p)$ and hence $H^*_T(M^T)$ is a direct sum of copies of a polynomial ring in *n* variables because $H^*_T(p) = H^*(BT)$.

Therefore we are in a nice situation when $H^{odd}(M) = 0$ and M^T is isolated. Goresky-Kottwitz-MacPherson [2] (see also [3, Chapter 11]) found that under the further condition that the weights at a tangential *T*-module are pairwise linearly independent at each $p \in M^T$, the image of ι^* in (1.1) above is determined by the fixed point sets of codimension one subtori of *T* when \mathbb{Q} is tensored in cohomology. Their result motivated Guillemin-Zara [4] to associate a labeled graph \mathcal{G}_M with *M* and define the "cohomology" ring $\mathcal{H}^*(\mathcal{G}_M)$ of \mathcal{G}_M , which is a subring of $\bigoplus_{p \in M^T} H^*(BT)$. Then the result of Goresky-Kottwitz-MacPherson can be stated that $H^*_T(M) \otimes \mathbb{Q}$ is isomorphic to $\mathcal{H}^*(\mathcal{G}_M) \otimes \mathbb{Q}$ as graded rings when *M* satisfies the conditions mentioned above.

The result of Goresky-Kottwitz-MacPherson can be applied to many important *T*-manifolds *M* such as flag manifolds and compact smooth toric varieties etc. When *M* is such a nice manifold, $H_T^*(M)$ is often known to be isomorphic to $\mathcal{H}^*(\mathcal{G}_M)$ without tensoring with \mathbb{Q} (see [1], [5], [6] for example). We determine the ring structure of $\mathcal{H}^*(\mathcal{G}_M)$ or $\mathcal{H}^*(\mathcal{G}_M) \otimes \mathbb{Z}[\frac{1}{2}]$ when *M* is a flag manifold of classical type directly without using the fact

that $H_T^*(M)$ is isomorphic to $\mathcal{H}^*(\mathcal{G}_M)$ ([7]). In my talk, I introduced the result when M is a flag manifold of type A. This is a joint work with Hiroaki Ishida and Mikiya Masuda and the details can be found in [7].

2. Labeled graph and its cohomology for type A_{n-1}

Let $\{t_i\}_{i=1}^n$ be a basis of $H^2(BT)$, so that $H^*(BT)$ can be identified with a polynomial ring $\mathbb{Z}[t_1, t_2, \ldots, t_n]$. We take an inner product on $H^2(BT)$ such that the basis $\{t_i\}$ is orthonormal. Then

(2.1)
$$\Phi(A_{n-1}) := \{ \pm (t_i - t_j) \mid 1 \le i < j \le n \}$$

is a root system of type A_{n-1} .

Definition. The labeled graph associated with $\Phi(A_{n-1})$, denoted \mathcal{A}_n , is a graph with labeling ℓ defined as follows.

- The vertex set of \mathcal{A}_n is the permutation group S_n on $\{1, 2, ..., n\}$.
- Two vertices w, w' in A_n are connected by an edge e_{w,w'} if and only if there is a transposition (i, j) ∈ S_n such that w' = w(i, j), in other words,

$$w'(i) = w(j), w'(j) = w(i) \text{ and } w'(r) = w(r) \text{ for } r \neq i, j.$$

• The edge $e_{w,w'}$ is labeled by $\ell(e_{w,w'}) := t_{w(i)} - t_{w'(i)}$.

Definition. The cohomology ring of \mathcal{A}_n , denoted $\mathcal{H}^*(\mathcal{A}_n)$, is defined to be the subring of Map($V(\mathcal{A}_n)$, $H^*(BT)$) = $\bigoplus_{v \in V(\mathcal{A}_n)} H^*(BT)$, where $V(\mathcal{A}_n)$ denotes the set of vertices of \mathcal{A}_n , *i.e.* $V(\mathcal{A}_n) = S_n$, satisfying the following condition:

 $f \in \operatorname{Map}(V(\mathcal{A}_n), H^*(BT))$ is an element of $\mathcal{H}^*(\mathcal{A}_n)$ if and only if f(v) - f(v') is divisible by $\ell(e)$ in $H^*(BT)$ whenever the vertices v and v' are connected by an edge e in \mathcal{A}_n .

For each i = 1, ..., n, we define elements τ_i, t_i of Map $(V(\mathcal{A}_n), H^*(BT))$ by

(2.2)
$$\tau_i(w) := t_{w(i)}, \quad t_i(w) := t_i \quad \text{for } w \in S_n$$

In fact, both τ_i and t_i are elements of $\mathcal{H}^2(\mathcal{A}_n)$.

Example. The case n = 3. The root system $\Phi(A_2)$ is $\{\pm(t_i - t_j)|1 \le i < j \le 3\}$. The labeled graph \mathcal{A}_3 and τ_i for i = 1, 2, 3 are as follows.

Theorem 2.1. Let \mathcal{A}_n be the labeled graph associated with the root system $\Phi(A_{n-1})$ of type A_{n-1} in (2.1). Then

$$\mathcal{H}^*(\mathcal{A}_n) = \mathbb{Z}[\tau_1, \dots, \tau_n, t_1, \dots, t_n]/(e_i(\tau) - e_i(t) \mid i = 1, \dots, n),$$

where $e_i(\tau)$ (resp. $e_i(t)$) is the *i*th elementary symmetric polynomial in $\tau_1, ..., \tau_n$ (resp. $t_1, ..., t_n$).

To prove this theorem, we need the following two lemmas.

Lemma 2.2. $\mathcal{H}^*(\mathcal{A}_n)$ is generated by $\tau_1, \dots, \tau_n, t_1, \dots, t_n$ as a ring.

Proof. We shall prove the lemma by induction on *n*. When n = 1, $\mathcal{H}^*(\mathcal{A}_1)$ is generated by t_1 since \mathcal{A}_1 is a point; so the lemma holds.

Suppose that the lemma holds for n - 1. Then it suffices to show that any homogenous element f of $\mathcal{H}^*(\mathcal{A}_n)$, say of degree 2k, can be expressed as a polynomial in τ_i 's and t_i 's. For each i = 1, ..., n, we set

$$V_i := \{ w \in S_n \mid w(i) = n \}$$

and consider the labeled full subgraph \mathcal{L}_i of \mathcal{A}_n with V_i as the vertex set. Note that \mathcal{L}_i can naturally be identified with \mathcal{A}_{n-1} for any *i*.

Let

(2.3)
$$1 \le q \le \min\{k+1, n\}$$

and assume that

(2.4)
$$f(v) = 0$$
 for any $v \in V_i$ whenever $i < q$.

A vertex w in V_q is connected by an edge in \mathcal{A}_n to a vertex v in V_i if and only if v = w(i, q). In this case f(w) - f(v) is divisible by $t_{w(i)} - t_{w(q)} = t_{w(i)} - t_n$ and f(v) = 0 whenever i < q by (2.4), so f(w) is divisible by $t_{w(i)} - t_n$ for i < q. Thus, for each $w \in V_q$, there is an element $g^q(w) \in \mathbb{Z}[t_1, \dots, t_n]$ such that

(2.5)
$$f(w) = (t_{w(1)} - t_n)(t_{w(2)} - t_n) \dots (t_{w(q-1)} - t_n)g^q(w)$$

where $g^{q}(w)$ is homogeneous and of degree 2(k + 1 - q) because f(w) is homogenous and of degree 2k.

One expresses

(2.6)
$$g^{q}(w) = \sum_{r=0}^{k+1-q} g^{q}_{r}(w) t^{r}_{n}$$

with homogenous polynomials $g_r^q(w)$ of degree 2(k+1-q-r) in $\mathbb{Z}[t_1, \dots, t_{n-1}]$. Then there is a polynomial G_r^q in τ_i 's (except τ_q) and t_i 's (except t_n) such that $G_r^q(w) = g_r^q(w)$ for any $w \in V_q$, because g_r^q restricted to \mathcal{L}_q is an element of $\mathcal{H}^*(\mathcal{L}_q) = \mathcal{H}^*(\mathcal{A}_{n-1})$. Since $\tau_i(w) = t_{w(i)}$ and w(i) = n for $w \in V_i$, we have

(2.7)
$$\prod_{i=1}^{q-1} (\tau_i - t_n)(w) = 0 \quad \text{for any } w \in V_i \text{ whenever } i < q.$$

Therefore, it follows from (2.5), (2.6), the Claim above and (2.7) that putting $G^q = \sum_{r=0}^{k+1-q} G^q_r t^r_n$, we have

$$(f - G^q \prod_{i=1}^{q-1} (\tau_i - t_n))(w) = f(w) - g^q(w) \prod_{i=1}^{q-1} (t_{w(i)} - t_n)$$

=0 for any $w \in V_i$ whenever $i \le q$.

Therefore, subtracting the polynomial $G^q \prod_{i=1}^{q-1} (\tau_i - t_n)$ from f, we may assume that

$$f(v) = 0$$
 for any $v \in V_i$ whenever $i < q + 1$.

The above argument implies that f finally takes zero on all vertices of \mathcal{A}_n (which means f = 0) by subtracting a polynomial in τ_i 's and t_i 's, and this completes the induction step.

We abbreviate the polynomial ring $\mathbb{Z}[\tau_1, \dots, \tau_n, t_1, \dots, t_n]$ as $\mathbb{Z}[\tau, t]$. The canonical map $\mathbb{Z}[\tau, t] \to \mathcal{H}^*(\mathcal{A}_n)$ is a grade preserving homomorphism which is surjective by Lemma 2.2. Let $e_i(\tau)$ (resp. $e_i(t)$) denote the i^{th} elementary symmetric polynomial in τ_1, \dots, τ_n (resp. t_1, \dots, t_n). It easily follows from (2.2) that $e_i(\tau) = e_i(t)$ for $i = 1, \dots, n$. Therefore the canonical map above induces a grade preserving epimorphism

(2.8)
$$\mathbb{Z}[\tau,t]/(e_1(\tau)-e_1(t), \dots, e_n(\tau)-e_n(t)) \to \mathcal{H}^*(\mathcal{A}_n).$$

Remember that the Hilbert series of a graded ring $A^* = \bigoplus_{j=0}^{\infty} A^j$, where A^j is the degree *j* part of A^* and of finite rank over \mathbb{Z} , is a formal power series defined by

$$F(A^*, s) := \sum_{j=0}^{\infty} (\operatorname{rank}_{\mathbb{Z}} A^j) s^j$$

In order to prove that the epimorphism in (2.8) is an isomorphism, it suffices to verify the following lemma because the modules in (2.8) are both torsion free.

Lemma 2.3. The Hilbert series of the both sides at (2.8) coincide, in fact, they are given by $\frac{1}{(1-s^2)^{2n}} \prod_{i=1}^{n} (1-s^{2i})$.

Proof. (1) Calculation of LHS at (2.8). Let $e_i := e_i(\tau) - e_i(t)$. It follows from the exact sequence

$$0 \to (e_1, \dots, e_n) \to \mathbb{Z}[\tau, t] \to \mathbb{Z}[\tau, t]/(e_1, \dots, e_n) \to 0$$

that we have

(2.9)
$$F(\mathbb{Z}[\tau, t]/(e_1, \dots, e_n), s) = F(\mathbb{Z}[\tau, t], s) - F((e_1, \dots, e_n), s).$$

Here, since deg τ_i = deg t_i = 2, we have

(2.10)
$$F(\mathbb{Z}[\tau, t], s) = \frac{1}{(1 - s^2)^{2n}}$$

as easily checked; so it suffices to calculate $F((e_1, \dots, e_n), s)$.

For $I \subset [n]$ we set $e_I := \prod_{i \in I} e_i$. Then it follows from the Inclusion-Exclusion principle that

(2.11)
$$F((e_1, \dots, e_n), s) = \sum_{\emptyset \neq I \subset [n]} (-1)^{|I|-1} F((e_I), s)$$

and since $F((e_I), s) = s^{\deg e_I}/(1 - s^2)^{2n}$ and $\deg e_I = \sum_{i \in I} 2i$, it follows from (2.11) that

(2.12)
$$F((e_1, \dots, e_n), s) = \sum_{\phi \neq I \subset [n]} (-1)^{|I|-1} \frac{s^{\sum_{i \in I} 2i}}{(1-s^2)^{2n}}.$$

Therefore it follows from (2.9), (2.10) and (2.12) that

$$F(\mathbb{Z}[\tau, t]/(e_1, \dots, e_n), s) = \frac{1}{(1 - s^2)^{2n}} - \sum_{\phi \neq I \subset [n]} (-1)^{|I| - 1} \frac{s^{\sum_{i \in I} 2i}}{(1 - s^2)^{2n}}$$
$$= \frac{1}{(1 - s^2)^{2n}} \sum_{I \subset [n]} (-1)^{|I|} s^{\sum_{i \in I} 2i}$$
$$= \frac{1}{(1 - s^2)^{2n}} \prod_{i=1}^n (1 - s^{2i}).$$

(2) Calculation of RHS at (2.8). Let $d_n(k) := \operatorname{rank}_{\mathbb{Z}} \mathcal{H}^{2k}(\mathcal{A}_n)$. Then

(2.14)
$$F(\mathcal{H}^*(\mathcal{A}_n), s) = \sum_{k=0}^{\infty} d_n(k) s^{2k}.$$

Recall the argument in the proof of Lemma 2.2. Since g_r^q in (2.6) belongs to $\mathcal{H}^{2(k+1-q-r)}(\mathcal{L}_q) = \mathcal{H}^{2(k+1-q-r)}(\mathcal{A}_{n-1})$ as shown in the Claim there, the rank of the module consisting of those g^q in (2.5) and (2.6) is given by

$$\sum_{r=0}^{k+1-q} d_{n-1}(k+1-q-r) = \sum_{r=0}^{k+1-q} d_{n-1}(r).$$

Therefore, noting (2.3), we see that the argument in the proof of Lemma 2.2 implies

$$d_n(k) = \sum_{q=1}^{\min\{k+1,n\}} \sum_{r=0}^{k+1-q} d_{n-1}(r),$$

in other words, if we set $d_{n-1}(j) = 0$ for j < 0, then (2.15)

$$d_n(k) = \begin{cases} \sum_{i=1}^n i d_{n-1}(k+1-i) & \text{if } k \le n-1, \\ \sum_{i=1}^n i d_{n-1}(k+1-i) + n \sum_{i=n+1}^{k+1} d_{n-1}(k+1-i) & \text{if } k \ge n. \end{cases}$$

We shall abbreviate $F(\mathcal{H}^*(\mathcal{A}_n), s)$ as $F_n(s)$. Then, plugging (2.15) in (2.14), we obtain

$$\begin{split} F_n(s) &= \sum_{k=0}^{\infty} \left(d_{n-1}(k) + 2d_{n-1}(k-1) + \dots + nd_{n-1}(k+1-n) \right) s^{2k} \\ &+ n \sum_{k=n}^{\infty} \left(d_{n-1}(k-n) + \dots + d_{n-1}(1) + d_{n-1}(0) \right) s^{2k} \\ &= F_{n-1}(s) + 2s^2 F_{n-1}(s) + \dots + ns^{2n-2} F_{n-1}(s) \\ &+ n \left(d_{n-1}(0) s^{2n} \frac{1}{1-s^2} + d_{n-1}(1) s^{2n+2} \frac{1}{1-s^2} + \dots \right) \\ &= F_{n-1}(s) \left(1 + 2s^2 + \dots + ns^{2n-2} \right) + n \frac{s^{2n}}{1-s^2} F_{n-1}(s) \\ &= \frac{1-s^{2n}}{1-s^2} F_{n-1}(s). \end{split}$$

On the other hand, $F_1(s) = 1/(1 - s^2)$ since $\mathcal{H}^*(\mathcal{A}_1) = \mathbb{Z}[t_1]$. It follows that

$$F_n(s) = \frac{1}{(1-s^2)^{2n}} \prod_{i=1}^n (1-s^{2i}).$$

This together with (2.13) proves the lemma.

References

- A. Arabia, *Cohomologie T-équivariante de G/B pour an groupe G de Kac-Moody*, C. R. Acad. Sci. Paris Sér. I. Math. 302 (1986) 631–634.
- [2] M. Goresky, R. Kottwitz and R. MacPherson, *Equivariant cohomology, Koszul duality* and the localisation theorem, Invent. Math. 131 (1998) 25–83.
- [3] V. Guillemin and S. Sternberg, *Supersymmetry and Equivariant de Rham Theory*, Springer, Berlin–Heidelberg–New York, 1999.
- [4] V. Guillemin and C. Zara, *1-skeleta, Betti numbers and equivariant cohomology*, Duke Math. J. 107 (2001) 283–349.
- [5] M. Harada, A. Henriques and T. Holm, Computation of generalized equivariant cohomologies of Kac-Moody flag varieties, Adv. in Math. 197 (2005), 198–221.
- [6] H. Maeda, M. Masuda and T. Panov, *Torus graphs and simplicial posets*, Adv. Math. 212 (2007), 458–483.
- [7] Y. Fukukawa, H. Ishida and M. Masuda, *The cohomology ring of the GKM graph of a flag manifold of classical type*, preprint.

##