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1. INTRODUCTION

Let T be a torus of dimension and M a closed smootf-manifold.
The equivariant cohomology d¥l, denotedH; (M), contains a lot of ge-
ometrial information orM. Moreover it is often easier to compuits (M)
thanH*(M) by virtue of the Localization Theorem which implies that the
restriction map

(1.1) 0 HE(M) = Hi(MT)

to the T-fixed point setM" is often injective, in fact, this is the case when
Hed(M) = 0. WhenMT is isolated,H;(MT) = @purH;(p) and hence
Hz(MT) is a direct sum of copies of a polynomial ringrivariables because
Hz(p) = H*(BT).

Therefore we are in a nice situation wheli(M) = 0 andM" is iso-
lated. Goresky-Kottwitz-MacPherson [2] (see also [3, Chapter 11]) found
that under the further condition that the weights at a tangehti@odule
are pairwise linearly independent at egzle MT, the image of* in (1.1)
above is determined by the fixed point sets of codimension one subibri of
whenQ is tensored in cohomology. Their result motivated Guillemin-Zara
[4] to associate a labeled graghy, with M and define the “cohomology”
ring H*(Gwm) of Gm, which is a subring o® .y H*(BT). Then the result of
Goresky-Kottwitz-MacPherson can be stated tHatM) ® Q is isomorphic
to H*(Gm) ® Q as graded rings whel satisfies the conditions mentioned
above.

The result of Goresky-Kottwitz-MacPherson can be applied to many im-
portantT-manifolds M such as flag manifolds and compact smooth toric
varieties etc. WhemM is such a nice manifold-;(M) is often known to
be isomorphic toH*(Gw) without tensoring withQ (see [1], [5], [6] for
example). We determine the ring structureféf(Gy) or H*(Gm) ® Z[%]

whenM is a flag manifold of classical type directly without using the fact
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thatH; (M) is isomorphic toH*(Gwm) ([7]). In my talk, | introduced the re-
sult whenM is a flag manifold of type A. This is a joint work with Hiroaki
Ishida and Mikiya Masuda and the details can be found in [7].

2. LABELED GRAPH AND ITS COHOMOLOGY FOR TYPE A,_1

Let {t;}!, be a basis oH?(BT), so thatH*(BT) can be identified with a
polynomial ringZ[ty, t,, . . ., t,]. We take an inner product ad?(BT) such
that the basigt;} is orthonormal. Then
(2.1) O(Ang) =1{x(ti—-t))|1<i<j<n}
is a root system of typé,_1.

Definition. The labeled graph associated witt{A,_1), denoted#,, is a
graph with labeling defined as follows.
e The vertex set ofA, is the permutation groug, on{1,2,...,n.
e Two verticesw, w’ in A, are connected by an edgg, if and only
if there is a transposition,(j) € S, such thaww = w(i, j), in other
words,

w(i)=w(j), w(j)=w(i) and w(r)=w(r) for r #1i, |j.
e The edges,,v is labeled byt(eyw) := tug) — tw()-
Definition. The cohomology ring ofA,, denotedH*(A,), is defined to
be the subring of MaM(A,), H*(BT)) = @vev(ﬂn) H*(BT), whereV(A,)

denotes the set of vertices &f,, i.e. V(A,) = Sy, satisfying the following
condition:

f € Map(V(An), H*(BT)) is an element ofH*(A,) if and
only if f(v) — f(V) is divisible by¢(e) in H*(BT) whenever
the verticess andv’ are connected by an edgén A,.
For each = 1,...,n, we define elements, t; of Map(V(A,), H*(BT))
by
(22) Ti(W) = tW(i)’ ti(W) =t forwesS,.
In fact, bothr; andt; are elements oH?(A,).

Example. The casen = 3. The root systend(Ay) is {+(ti —t))I1 <i< j<
3}. The labeled graptfi; andr; fori = 1,2, 3 are as follows.

123  t-t3 132 1 t1 to t3 t3 to
i1 —t3
213 312 to 3 11 T 3 to

t1-to
231 321 to i3 i3 to 1y 1y

The labeled grapl¥is T1 T2 73



Theorem 2.1. Let A, be the labeled graph associated with the root system
®(An-1) of type A-1in (2.1). Then

7_{*(‘?‘l’\) = Z[Tla =5 Thy tl, ty tn]/(a (T) - a(t) | I = 1’ "y n),

where (1) (resp. g(t)) is the " elementary symmetric polynomiahiq -, 7,
(resp. t, -, tn).

To prove this theorem, we need the following two lemmas.
Lemma 2.2. H*(A,) is generated by, -, T, t1, -, ty @s a ring.

Proof. We shall prove the lemma by induction anWhenn = 1, H*(A,)
is generated by, sinceA; is a point; so the lemma holds.

Suppose that the lemma holds for 1. Then it siffices to show that any
homogenous elemeriitof H*(A,), say of degreek can be expressed as a
polynomial int;’s andt;’s. For each = 1,...,n, we set

Vi i={we S, |w(i) =n)

and consider the labeled full subgragh of A, with V, as the vertex set.
Note thatZ; can naturally be identified withf,_, for anyi.
Let

(2.3) 1<qg<minfk+1,n}
and assume that
(2.4) f(v) =0 for anyv e V; whenevel < q.

A vertexwin Vj is connected by an edge.ifti, to a vertexvin V; if and only
if v.=w(i,q). Inthis casef(w) — f(v) is divisible bytyi — twg = twi — t
and f(v) = 0 whenevei < qby (2.4), sof(w) is divisible byt — t, for
I < g. Thus, for eactw € V,, there is an elemenfi(w) € Z[ty, -, t,] such
that

(2-5) f(W) = (tw(l) - 1:n)(tw(Z) - tn) s (tw(q—l) - tn)gq(w)

wheregd(w) is homogeneous and of degred 2(1 — ) becausef (w) is
homogenous and of degrek. 2
One expresses

k+1-q

(2.6) g'W) = > g,

r=0
with homogenous polynomiats(w) of degree X+1—qg—r) in Z[ty, -, t,_1].
Then there is a polynomi& in 7;’s (exceptrq) andt’s (except,) such that
Gy (w) = gr(w) for anyw € V,, because) restricted taZ, is an element of
7_{* (.Eq) = ﬂ*(ﬂn_l).
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Sincer;(w) =ty andw(i) = nfor w € V;, we have
q-1
(2.7) H(Ti —t,)(w) =0 for anyw € V; whenevel < g.
i=1
Therefore, it follows from (2.5), (2.6), the Claim above and (2.7) that putting
G = Y9G, we have

g-1 g-1
(F =G | = ta)w) =F(w) = W) | [ty — t)
i=1 i=1
=0 for anyw € V; whenevei < g.

Therefore, subtracting the polynomi@r Hﬁ:‘f(ri - t,) from f, we may
assume that

f(v) =0 foranyv eV, wheneveli <q+ 1.

The above argument implies thaffinally takes zero on all vertices ofi,
(which meansf = 0) by subtracting a polynomial in’s andt;’s, and this
completes the induction step. m|

We abbreviate the polynomial ring[zy, -, Tn, t1, -, t,] as Z[z,t]. The
canonical maZ[r,t] —» H*(A,) is a grade preserving homomorphism
which is surjective by Lemma 2.2. Lei(r) (resp. &(t)) denote the
elementary symmetric polynomial in, --, t, (resp. ty, -, tn). It easily fol-
lows from (2.2) thatg(r) = e(t) for i = 1,..,n. Therefore the canonical
map above induces a grade preserving epimorphism

(2.8) Z[,1]/(ew(r) — e(t), -, en(r) — en(t)) = H*(An).

Remember that the Hilbert series of a graded Ang: &2 (Al, whereAl
is the degreg part of A" and of finite rank oveZ, is a formal power series
defined by

F(A", ) := Z(ranl»gz A)s.
j=0
In order to prove that the epimorphism in (2.8) is an isomorphismfiices
to verify the following lemma because the modules in (2.8) are both torsion
free.

Lemma 2.3. The Hilbert series of the both sides(@t8) coincide, in fact,
they are given bw [T, (1 - ™).

Proof. (1) Calculation of LHS at (2.8). Let := g(r) — e(t). It follows
from the exact sequence

0 — (&, &) = Z[n.1] = Z[r,1]/(&1, . &) — O
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that we have

(29)  F(Z[r.t]/(er,~€n),9) = F(Z[r.1],5) — F((e1,, &), ).
Here, since deg = degt; = 2, we have

1
as easily checked; so itices to calculat&((ey, -, €,), 9).

Forl c [n] we sete := [],, &. Then it follows from the Inclusion-
Exclusion principle that

(2.12) F(en e 9= ), (-1)'"'F((@).9

0cin]

(2.10) F(Z[r 1,9 =

and sinceF((g), s) = %% /(1 — $9)?" and deg = 3, 2i, it follows from
(2.11) that

. glial
(2.12) F((ew, - €), ) = @gfn](_l)“' 1m.

Therefore it follows from (2.9), (2. 10) and (2.12) that

el 2
F(Z[r,t]/(eL, - €),9) = = SZ)Zn ¢q;qn]( 1)||| l(l )2
(213) (1 SZ)Zn ICZ[';]( 1)“|Szle| 2i

1 i
- o D(l — ).
(2) Calculation of RHS at (2.8). Let,(K) := rank; H?(A,). Then
(2.14) F(H (An), S) = i dn(K) S
k=0

Recall the argument in the proof of Lemma 2.2. Sigta (2.6) belongs
to H2K1-aN(£,) = HAK 4D ( A, ;) as shown in the Claim there, the rank
of the module consisting of thogg in (2.5) and (2.6) is given by

k+1-q k+1-q

D, Gk 1-g=r)= > dua(n).
r=0 r=0

Therefore, noting (2.3), we see that the argument in the proof of Lemma 2.2
implies
min{k+1,n} k+1-q

dh(K) = Z Zdn 1(r),
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in other words, if we satl, ;(j) = 0 for j <0, then
(2.15)

4.4 = {z{;l idn_1(K+ 1) ifk<n-1,

SN idna(k+1-i)+nYKL dyg(k+1-0)  ifk>n.

We shall abbreviaté (H*(Ap), S) asFn(s). Then, plugging (2.15) in (2.14),
we obtain

Fn(s) = i (s (k) + 203 (K = 1) + - + nch_y (K + 1 — n))s*
k=0

+n i (Ohs(k = 1) + - + do-y(1) + do_1(0)) ™
k=n

:Fn—l(s) + ZSZFn_l(S) + .+ nSZ”_ZFn—l(S)

n 1 n+ 1
+ n(dh1(0) R On_1(1)? Zm + )
=Fn—1(3)(1 +25% + o + nsZ”‘Z) + nliznsz Fn-1(9
1-¢"
“1-g Fn-1(9).

On the other hands1(s) = 1/(1 - ) sinceH*(A;) = Z[t4]. It follows that

n

1 i
aom | [0

i=1
This together with (2.13) proves the lemma. m|

Fn(s) =
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