On the existence and classification of isovariant maps

Ikumitsu NAGASAKI

Kyoto Prefectural University of Medicine (KPUM)

Sept. 2, 2010
Today’s talk

(I) Existence or nonexistence results on isovariant maps, in particular, Borsuk-Ulam type results.

(II) Classification results on isovariant maps, in particular, Hopf type results.
Isovariant maps

Let G be a compact Lie group. All maps are assumed to be continuous.

Definition. A G-map $f : X \to Y$ between G-spaces is called G-iso-variant if $G_{f(x)} = G_x$ for all $x \in X$.

Example.

(1) If both X and Y are free G-spaces, then an arbitrary G-map is a G-iso-variant map.

(2) Suppose X is a G-space with nontrivial action and Y is a G-space with $Y^G \neq \emptyset$. In this case, a map $f : X \to Y^G \subset Y$ is equivariant, but not isovariant.
Isovariant homotopy classes

Definition. A G-homotopy $F : X \times I \to Y$ is called a G-isovariant homotopy if F is G-isovariant.

Let $[X, Y]^{\text{isov}}_G$ denote the set of isovariant homotopy classes of G-isovariant maps from X to Y.

As usual, $[X, Y]_G$ denotes the set of G-homotopy classes of G-maps from X to Y.
Notation

(1) C_n: a cyclic group of order n.

(2) $U_k (= \mathbb{C}), k \in \mathbb{Z}$: the unitary 1-dimensional representation of C_n on which a generator $c \in C_n$ acts by $c \cdot z = \xi_n^k z$, where $z \in U_k$ and $\xi_n = \exp(2\pi \sqrt{-1}/n)$.

(3) SV: the unit sphere of a representation V of G, which is called a representation sphere or linear G-sphere.
An existence problem

Let $G = C_{pq}$, where p, q are distinct primes.

Set

$$U_1^r = U_1 \oplus \cdots \oplus U_1 \text{ (r times)}$$

and

$$W = U_p \oplus U_q.$$

Note that G acts freely on SU_1^r, but not freely on SW.

In fact, the singular set (nonfree part) of SW:

$$SW^{>1} = SW^{C_p} \cup SW^{C_q} = SU_p \bigsqcup SU_q.$$
An existence problem

In equivariant case, as an application of equivariant obstruction theory, one can see that, for any $r \geq 1$, there exists a C_{pq}-map

$$g : SU^r_1 \rightarrow S(U_p \oplus U_q).$$

Question. What about a C_{pq}-isovariant map?

Does there exist a C_{pq}-isovariant map from SU^r_1 to SW?
The answer

If \(r = 1 \), then there is an isovariant map. For example, one can define an isovariant map \(f_{0,0} : SU_1 \to SW \) by

\[
f_{0,0}(z) = (z^p, z^q)/\sqrt{2}.
\]

(In fact, \(f_{0,0} \) is a \(G \)-embedding.)

When \(r \geq 2 \), the answer is “No.”

This is shown by a Borsuk-Ulam type theorem.
In transformation group theory, the classical Borsuk-Ulam theorem is stated as follows.

Theorem 1. Let S^m and S^n be spheres with antipodal C_2-action. If there is a C_2-map $f : S^m \to S^n$, then the inequality $m \leq n$ holds.

Thus the Borsuk-Ulam theorem provides the nonexistence of a C_2-map. In fact, if $m > n$, then there is no C_2-map from S^m to S^n.
A generalization of the Borsuk-Ulam theorem

Many generalizations of the Borsuk-Ulam theorem are known. The following is one of them.

Theorem 2 (N-Hara-Kawakami-Ushitaki, Biasi-de Mattos). Let X be a free C_n-space and Y a Hausdorff free C_n-space. Suppose that there exists $m \geq 1$ such that

$$\tilde{H}_q(X; \mathbb{Z}/n) = 0 \quad \text{for} \quad 0 \leq q \leq m,$$

and

$$H_{m+1}(Y/C_n; \mathbb{Z}/n) = 0.$$

Then there is no C_n-map from X to Y.

Here the homology is the singular homology.
A generalization of the Borsuk-Ulam theorem

This theorem deduces a well-known result below.

Corollary 3 (mod p Borsuk-Ulam theorem). Assume that C_p (p: prime) acts freely on X with $H_*(X; \mathbb{Z}/p) \cong H_*(S^m; \mathbb{Z}/p)$ and on (Hausdorff) Y with $H_*(Y; \mathbb{Z}/p) \cong H_*(S^n; \mathbb{Z}/p)$. If there is a C_p-map $f : X \to Y$, then $m \leq n$.

In other words, if $m > n$, then there is no C_p-map from X to Y.
Proof of the nonexistence

It suffices to show this when $r = 2$. Suppose

$$f : SU_1^2 = S(U_1 \oplus U_1) \to S(U_p \oplus U_q) = SW$$

is an isovariant map.

By restricting the action, we get a C_p-map $f : SU_1^2 \to SW \setminus SW^{C_p}$

Since $SW \setminus SW^{C_p} \cong S^1$, $SW \setminus SW^{C_p}$ is a free C_p-homology sphere of (homological) dimension 1.

By the mod p Borsuk-Ulam theorem, we have $\dim SU_1^2 \leq 1$, however this is a contradiction. \qed
Homologically linear actions

The above example is generalized.

Set

\[R_G = \begin{cases} \mathbb{Z}/|G| & \text{if } \dim G = 0, \\ \mathbb{Z} & \text{if } \dim G > 0. \end{cases} \]

Definition. A smooth closed \(G \)-manifolds \(\Sigma \) is called an \(R_G \)-homologically linear \(G \)-sphere if for every (closed) subgroup \(H \), the \(H \)-fixed point set \(\Sigma^H \) is an \(R_G \)-homology sphere or the empty set; namely,

\[H_\ast(\Sigma^H; R_G) \cong H_\ast(S^{m(H)}; R_G), \quad m(H) = \dim \Sigma^H. \]

For convenience, we set \(\dim \Sigma^H = -1 \) if \(\Sigma^H \) is empty.
More general results

Then we have

Theorem 4 (Isovariant Borsuk-Ulam theorem). *Let G be a solvable compact Lie group. Let Σ_1 and Σ_2 be R_G-homologically linear G-spheres. If there is a G-isovariant map $f : \Sigma_1 \to \Sigma_2$, then the inequality*

$$\dim \Sigma_1 - \dim \Sigma_1^G \leq \dim \Sigma_2 - \dim \Sigma_2^G$$

holds.

Remark. Wasserman first proved this result for representation spheres.
Nonsolvable case

Using a result of Oliver, we have

Proposition 5. If G is nonsolvable, then there exists a sequence

$$
\cdots \xrightarrow{h_n} \Sigma_n \xrightarrow{h_{n-1}} \Sigma_{n-1} \xrightarrow{h_{n-2}} \cdots \xrightarrow{h_1} \Sigma_1
$$

such that

- each Σ_n is a homologically linear G-sphere
 (in fact Σ_n can be taken to be a semilinear G-sphere),
- each h_n is a G-isovariant map,
- $\Sigma_n^G = \emptyset$ and $\lim_{n \to \infty} \dim \Sigma_n = \infty$.

Nonsolvable case

Take a G-embedding $i : \Sigma_1 \subset SW$ for some representation W. Then an isovariant map $f_n : \Sigma_n \to SW$ is defined by composition.

Thus there is an integer n_0 such that

$$\dim \Sigma_n + 1 > \dim SW - \dim SW^G$$

for any $n > n_0$.

This shows that the isovariant Borsuk-Ulam theorem does not hold for a nonsolvable compact Lie group G.

Remark

Hence, for R_G-homologically linear actions, the isovariant Borsuk-Ulam theorem holds if and only if G is solvable.

Remark. The problem whether the above Σ_n can be taken to be a linear G-sphere is still open.

In equivariant case, the following is known.

Proposition 6 (Bartsch). Let G be a finite group. the Borsuk-Ulam theorem (in a weak sense) holds if and only if G is of prime power order.
Corollary

Another result is obtained from the isovariant Borsuk-Ulam theorem.

Corollary 7 (N-Ushitaki). Let G be a finite group and Σ an R_G-homology sphere with free G-action. Let SW be the representation sphere of a representation W of G. If there is a G-isovariant map $f : \Sigma \to SW$, then the inequality

$$\dim \Sigma + 1 \leq \dim SW - \dim SW^{>1},$$

where $SW^{>1} = \bigcup_{1 \neq H \leq G} SW^H$ (the singular set).

Remark. This result still holds when $G = S^1$, $\text{Pin}(2) \cong N_{S^3}(S^1)$. However, in the case of $G = S^3$, it is unknown.
Existence results

The isovariant Borsuk-Ulam theorem provides nonexistence results of isovariant maps.

we here discuss an existence problem under some conditions.

As is seen before, there is a C_{pq}-isovariant map

$$f_{0,0} : SU_1 \rightarrow S(U_p \oplus U_q).$$

This is generalized as follows.
Existence results

Proposition 8. Let M be a free G-manifold. Let W be a representation of G. Suppose

$$\dim M/G + 1 \leq \dim SW - \dim SW^{>1}.$$

Then there exists a G-isovariant map from M to SW.

Outline of Proof.

Set $SW_{\text{free}} = SW \setminus SW^{>1}$ and $d = \dim SW - \dim SW^{>1}$.

Fact. SW_{free} is $(d - 2)$-connected.
Existence results

It suffices to construct a G-map from M to SW_{free}.

Fix a G-CW complex structure of M. One can inductively construct a G-map as follows.

Suppose that a G-map $f_k : X_k \to SW_{\text{free}}$ is constructed on the k-skeleton X_k of M.

Let $X_{k+1} = X_k \cup \phi G \times D^{k+1} \cup \cdots$. Then

$$f_k \circ \phi|_{\partial D^{k+1}} : 1 \times \partial D^{k+1} \to SW_{\text{free}}$$

is extended to $f_{k+1} : D^{k+1} \to SW_{\text{free}}$, since $k \leq d - 2$ and SW_{free} is $(d - 2)$-connected. Hence f_k equivariantly extends to a G-map $f_{k+1} : X_{k+1} \to SW_{\text{free}}$. \qed
Next we discuss a classification problem. Let $G = C_{pq}$. Recall the isovariant map

$$f_{0,0} : SU_1 \to SW = S(U_p \oplus U_q)$$

$$f_{0,0}(z) = (z^p, z^q)/\sqrt{2}.$$

One can find other isovariant maps. Indeed, a map $f_{\alpha,\beta} : SU_1 \to SW$ defined by

$$f_{\alpha,\beta}(z) = (z^{p(1+\alpha q)}, z^{q(1+\beta p)})/\sqrt{2},$$

$f_{\alpha,\beta}$ is G-isovariant for $(\alpha, \beta) \in \mathbb{Z}^2$.

Question. Do these maps represent different isovariant homotopy classes?
Classification problem — An example

The answer is “Yes.” In fact,

Proposition 9. If \(f_{\alpha, \beta} \) and \(f_{\alpha', \beta'} \) are isovariantly homotopic, then \((\alpha, \beta) = (\alpha', \beta') \).

In order to show this, we introduce the *multidegree* as an isovariant homotopy invariant.

If \(f \) is an isovariant map, then we obtain a \(G \)-map \(f : SU_1 \to SW_{\text{free}} \).

Consider the induced homomorphism

\[
f_* : H_1(SU_1) \to H_1(SW_{\text{free}}).
\]
Lemma 10.

\[\pi_1(SW_{\text{free}}) \cong H_1(SW_{\text{free}}) \cong \mathbb{Z} \oplus \mathbb{Z}. \]

Proof. \(SW_{\text{free}} = SW \setminus (SU_p \cup SU_q) \cong (U_p^\perp - 0) \times (U_q^\perp - 0) \cong SU_q \times SU_p. \)

We define the multidegree \(\text{mDeg}(f) \) of \(f \) by

\[\text{mDeg}(f) = f_*([SU_1]) \in \mathbb{Z} \oplus \mathbb{Z}. \]
The multidegree of $f_{\alpha,\beta}$ is

$$\text{mDeg } f_{\alpha,\beta} = (q(1 + \beta p), p(1 + \alpha q)),$$

This shows that if $(\alpha, \beta) \neq (\alpha', \beta')$, then $\text{mDeg } f_{\alpha,\beta} \neq \text{mDeg } f_{\alpha',\beta'}$.

Hence the isovariant maps $f_{\alpha,\beta}$ represent different isovariant homotopy classes.
Classification problem — An example

In this case, the converse is true; in fact,

Proposition 11. Let \(f, g : SU_1 \to SW \) be isovariant maps. If \(m\text{Deg} f = m\text{Deg} g \), then \(f \) and \(g \) are isovariantly homotopic.

Outline of Proof.

Set \(G = C_{pq} \).

It suffices to construct a \(G \)-homotopy \(F : SU_1 \times I \to SW_{\text{free}} \) between \(f \) and \(g \).
Classification problem — An example

Consider the commutative diagram:

\[
[SU_1, SW_{\text{free}}]_G \xrightarrow{\gamma G} H^1(SU_1/G, \pi_1) = \mathbb{Z}^2
\]

\[
\varepsilon \downarrow \quad \quad \quad \quad \downarrow \pi^*
\]

\[
[SU_1, SW_{\text{free}}] \xrightarrow{\gamma} H^1(SU_1, \pi_1) = \mathbb{Z}^2,
\]

where \(\pi_1 = \pi_1(SW_{\text{free}}) = \mathbb{Z}^2 \). The vertical map \(\varepsilon \) is the forgetful map and \(\pi : SU_1 \to SU_1/G \) is the orbit map.
Classification problem — An example

\[
\begin{align*}
[\text{SU}_1, \text{SW}_{\text{free}}]_G & \xrightarrow{\gamma_G} H^1(\text{SU}_1/G, \pi_1) = \mathbb{Z}^2 \\
\varepsilon & \downarrow \\
[\text{SU}_1, \text{SW}_{\text{free}}] & \xrightarrow{\gamma} H^1(\text{SU}_1, \pi_1) = \mathbb{Z}^2,
\end{align*}
\]

Fix a \(G \)-map \(g : \text{SU}_1 \to \text{SW}_{\text{free}} \). The horizontal maps are defined by

\[
\gamma_G([f]) = \circ_G(f, g) \quad \text{and} \quad \gamma([f]) = \circ(f, g),
\]

which are bijections as a consequence of the equivariant obstruction theory.
Classification problem — An example

\[
[SU_1, SW_{\text{free}}]_G \xrightarrow{\gamma G} H^1(SU_1/G, \pi_1) = \mathbb{Z}^2
\]

One can see that

\[\pi^* \text{ is multiplication by } pq\]

and

\[\pi^*(\sigma_G(f, g)) = \sigma(f, g).\]
Classification problem — An example

\[[SU_1, SW_{\text{free}}]_G \xrightarrow{\gamma_G} \mathbb{H}^1(SU_1/G, \pi) = \mathbb{Z}^2 \]

\[\varepsilon \downarrow \quad \downarrow \pi^* \]

\[[SU_1, SW_{\text{free}}] \xrightarrow{\gamma} \mathbb{H}^1(SU_1, \pi) = \mathbb{Z}^2, \]

Hence \(\pi^* \) is injective, and the forgetful map \(\varepsilon \) is injective.

By calculation of the obstruction class, we have

\[\gamma([f]) = \sigma(f, g) = \text{mDeg } f - \text{mDeg } g. \]

Hence if \(\text{mDeg } f = \text{mDeg } g \), then we have \(\sigma_G(f, g) = 0 \) and so a \(G \)-map \(f \amalg g \) extends to a \(G \)-homotopy \(F \).
A classification result

Furthermore it is seen that

\[\text{mDeg } f - \text{mDeg } g \in pq\mathbb{Z}^2. \]

Taking \(g = f_{0,0} \), we can define an injective map

\[D : [SU_1, SW_{\text{free}}]_G \to \mathbb{Z} \oplus \mathbb{Z} \]

by \(D[f] = (\text{mDeg } f - \text{mDeg } f_{0,0})/pq \).

Since \(D([f_\alpha, \beta]) = (\beta, \alpha) \), it follows that \(D \) is surjective. Hence \(D \) is a bijection.
A classification result

Thus we have the following classification result.

Proposition 12. There is a one-to-one correspondence

\[D : [SU_1, SW]_{iso}^G \rightarrow \mathbb{Z} \oplus \mathbb{Z}. \]

In particular, the maps \(f_{\alpha,\beta} \) represent all isovariant homotopy classes.

Using the notion of degree, H. Hopf showed that

\[\text{deg} : [M, S^n] \rightarrow \mathbb{Z} \]

is a bijection for an orientable closed \(n \)-manifold \(M \). We call this sort of result a **Hopf type theorem**.
A Hopf type theorem

The above example is generalized as follows.

We assume the following.

• G is a finite group.
• M is a connected, closed free G-manifold.
• SW is a unitary representation sphere of G.
• $\dim M + 1 = \dim SW - \dim SW^1$.

Notation

• $\mathcal{A} = \{ H \in \text{Iso } W \mid \dim SW^H = \dim SW^1 \}$.
• $\mathcal{A}/G = \{ (H) \mid H \in \mathcal{A} \}$.
A Hopf type theorem

Theorem 13 *(Isovariant Hopf theorem).* *With the above assumption*

(1) *If M is orientable and the G-action on M is orientation-preserving, then there is a one-to-one correspondence* \[
[M, SW]_{G}^{iso} \cong \bigoplus_{(H) \in A/G} \mathbb{Z}.
\]

Every isovariant homotopy class is determined by the multidegree.
A Hopf type theorem

(2) If M is non-orientable, then there is a one-to-one correspondence

$$[M, SW]^{isov}_G \cong \bigoplus_{(H) \in \mathcal{A}/G} \mathbb{Z}/2.$$

If G is of odd order, then every isovariant homotopy class is determined by the mod 2 multidegree.
Further results

(1) In the case where M is orientable, if the G-action is \textit{not} orientation-preserving, then some $\mathbb{Z}/2$ components appear in $[M, SW]_{G}^{i\text{so}v}$, and the multidegree does not determine the isovariant homotopy classes.

$$[M, SW]_{G}^{i\text{so}v} \cong \bigoplus \mathbb{Z} \oplus \bigoplus \mathbb{Z}/2.$$

(2) In the case where M is non-orientable, if G is not of odd order, then the mod 2 multidegree does not always determine the isovariant homotopy classes.