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WHITNEY’S TRICK FOR THREE 2-DIMENSIONAL
HOMOLOGY CLASSES OF 4-MANIFOLDS

MASAYUKI YAMASAKI

ABSTRACT. In his recent paper, Y. Matsumoto has defined a triple product
of 2-homology classes of simply-connected oriented 4-manifolds, when the
intersection numbers are zero. In the present paper, the author establishes
that three 2-homology classes can be homotopically separated if the inter-
section numbers and the triple product vanish.

1. Introduction. Let M be a simply-connected oriented 4-manifold possibly
with boundary. We shall say that homology classes x, € H(M; Z), i =
1, ..., n, can be separated, if there exist continuous maps f: S2 > M repre-
senting x;, i = 1, ..., n, such that £(S?) N f(S?H =D fori #j.

In [2], establishing a homotopy version of Whitney’s trick in dimension 4,
Kobayashi proved that homology classes x, and x, € H)(M; Z) can be
separated if and only if the intersection number X, x;=0.

On the other hand, Matsumoto [3] defined a “secondary intersection
triple”, which we shall call Matsumoto triple, {x,, x5, x;> € Z /1, where
X, X5, X3 are 2-dimensional homology classes of M such that x;+ x; =0 for
i7j and I is an ideal of Z, {x,-y, + x;-y, + X3' V3 E€E Z; ¥, VY5 €
Hy(M, Z)}. See §4 for the definition. He showed that X, Xy, X5 cannot be
separated if the triple {x,, x,, x,> # 0.

In this paper we shall prove the following:

THEOREM. Let M be a simply-connected oriented 4-manifold, then three
homology classes x,, x,, x, € Hy(M; Z) can be separated if and only if the
intersection numbers x, - X; = 0 for i #j and the Matsumoto triple XXy X3)
= (.

COROLLARY. When M is closed, homology classes X1, X3, X3 can be separated
if and only if the intersection numbers x, - x; =0 for i #j.

The author is grateful to Professor M. Kato for helpful suggestions and
advice without which this paper could not have been completed.

2. Some fundamental devices. Throughout this paper, we shall denote by M
a simply-connected oriented 4-manifold. Let f,,f,: S2—> M be smooth
generic immersions in the sense that all the self- and mutual-intersections of
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S,(= f,(8?) and S, (= f(S %)) are transversal double points. Suppose that
S, N S, consists of positive double points, say py; - - - s Pm> and negative ones,
say gy, - - - » G, Where m, n # 0. Draw smooth arcs y;, Y, connecting p, and
g, on S,, S,, respectively. We may assume that y, and vy, are generic in the
sense that they have no self-intersection points and pass through neither the
self-intersection points nor the mutual intersection points of S, and S,. As M
is simply-connected, v, U v, bounds a smoothly immersed 2-disk A, called a
Whitney disk, which is generic with respect to S, and S,. Let ¢ be a nonzero
vector field on y, U 7, such that when restricted to v, it gives a cross-section
of a normal 1-vector bundle »(y, <> S,) and when restricted to y, the unique
extension of ¢|(, ., OVer v, which is normal to both S, and A. Let 0(8) € Z
= 7,(S0,) be the obstruction to extending ¢ over A. We shall say that the
Whitney disk A is good, if 0(4) = 0.

Device 1 (Making the Whitney disk A good). When the Whitney disk A is
not good, one can obtain a good Whitney disk spanning y, U v, by spinning
A around v, or y, (see [1]).

Device 2 (Making S, escape from the intersection with int A across v,). If
S, N int A # &, for a point p € S, N int A we take a point p’ € int y, and a
simple arc y connecting p and p’ on A such that yn S, = {p,p’} and
vy N S, = &. Pushing a neighborhood of the intersecting point p in S, along
the arc y off A as in Figure 1, we can make S, escape from the intersection
point p with int A across v,, by adding two self-intersection points with
opposite sign for S,.
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.
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FIGURE 1

Device 3 (Whitney’s trick for S, and S, across y,)- Let A be a good
immersed Whitney disk such that S, N int A = &. We set

D={(xy) ER;x*+y*< 1,y >0},
D’ = {(x,») € R} x* + y* < (6/5),y > 0},
C, = {(xy) ER; x* +y* =1,y >0},
Ci={(x»)ER,x*+y'= (6/5)%y > 0},
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C={(x,00)€ER*} -1<x< 1},

C={(x,00€R% —6/5<x< 6/5}.

Let f: D — M be an immersion such that (D) = A, f(C)) = Y1 (C) = v,.
Adding a collar along y,, we have an extension f': D' > M of f, so that
f(€D N S, =8, f(C) C S,. Since A is good, we have an immersion f:
D’ X [—1, 1]— M using the vector field ¢ (the extension of ¢ over A) such
that f restricted to D’ = D’ X 0 coincides with f’. Now the immersed 2-
sphere S, shall be modified as follows.

Si = (82 = i x[ -1, 1)) UACI X[ -1, 1]) UAD’ x {~1,1}).
Rounding the corners, one can assume S; is a generic immersed 2-sphere.
Now 8§\N S;=(pp--esPprGr--., 4n)- It is easy to construct a generic
immersion f;: S* — M with fj(S?) = S; which is regularly homotopic to f,.
This process will be referred to as Whitney’s trick for S, and S, across v, (see
[4, Theorem 6.6]).

REMARK. (1) Let X be a compact subset of M. If A N X =, then
SN X = 8, N X in Device 3.

(2) These can be applied to generic intersections of immersed disks and
spheres not only of immersed spheres.

Using the Devices 1, 2 and 3 repeatedly, we obtain

PROPOSITION (KOBAYASHI [2]). Let X1, Xy € Hy(M; Z) be homology classes
such that x, - x, = r. Then x, and x, can be represented by continuous maps of
S? whose images have || points in common. In particular, if x,-x, =0, x, and
X, can be separated.

3. The key lemma. Let S,, S,, S, be smoothly immersed generic 2-spheres in
M such that their mutual algebraic intersection numbers are all zero. We
denote by p{*) (or g{"/)) the Ath positive (or negative) intersection point of S,
and §;. Draw a smoothly imbedded arc & (or v{#) connecting i) and
g{") on the immersed sphere S, (or S;)- We assume that y{%) n y{) = &
(A # p or j # k). Let A{") be a smoothly immersed generic 2-disk bounding
the circle y{¥) U y{%).

LEMMA. Suppose that A{) N S, = (a},...,a,} and AV NS, =
{b1, ..., b,} where {i,j, k} = (1,2, 3). Then one can regularly homotope
S1» Sy, 83 10 obtain S, S;, S; and Whitney disks {A'{¥} such that:

(D) §/n S8 =8,n S Vi,

@ AN S, =AM S, for A> 2, and

@) AN S ={ay...,a,), AN S = {bo by, . . ., b,} where b,
and a, have the same sign.

PROOF. (See Figure 2.) Make S escape from the intersection point a, with
Af¥) across y{%), adding new intersections of Sy and S, pf* and gf*9; then
we obtain a small Whitney disk A’. Choose an imbedding g: B =[-1, 1] X
[0, 1] - &, such that
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g([-1,1] % (0))=09ansS, g1} x (0}) = pg*",

g({—1} x (0)) = gé*", gB)N ') =2
except for / = jand A = 1 or 2, and
g(B) n vl = vi([0.3]) =2 &B) n v =v([3 1]) = 2
where

O = i, D) = .

Let y§3" = 34" N S,

y§k = g({1, -1} X[0, 1] U[ -1, 1] X {1}),
and Af) = g(B) U A'. Then AfY 0 S, = {p{*, g§¥}. Let ¢ be a vector
field on the arc g({0} X [0, 1)) which does not lie in 7(S;), T(S)|g +
T(Af)) g (I = 1,2). Push Af“? off S; along ¥ keeping vk fixed; then we
obtain an imbedded disk A{®? bounded by y§“" U y{j" such that it meets S;
normally along y§5", S, normally along 5, and

S, nint A =@, S, nint Af*) = &,
5} n a&k’i} = {p’ q}, ﬁsk'i} N A{"J] =@

for A = 1, 2. We can cancel these intersection points p and ¢ as follows. Let y
(or Y)) be a generic arc connecting p and g on Af" (or S)), and let A be a
good generic immersed disk bounded by y U Y'. We can make S; escape from
the intersection with int A across y’. Doing Whitney’s trick for Af*? and ;
across y/, we obtain a new immersed disk A§“ such that S; N Af*) = &. We
may assume that A§*") is good, and

Al A AP = &, int AR N int ALY = &
For example, if A§? N AU*) # &, we can make A} escape from the
intersection with A%} across y{%¥) by adding two intersection points of AfD
and S,. Possibly int A N S, # &, int Af*) N S, # &. Make A§? escape
from this intersection with S, across y§§", if necessary.

Using A§%), we can do Whitney’s trick for S, and §; across v§& and we
obtain a new immersed 2-sphere S; such that

S'N S, =S n S — {pieD, gf*"} and AP N S/ =49 N0 S,

Let / denote the immersion: D’ X [—1,1]— M in Device 3 such that
f(C, X {0}) = y§¥"). We may assume that

F({(0,0)) x[-1,1]) = v¥) n f(D" X[ -1, 1]).
We shall modify the disk A{”} as follows:
A4 = Af) U f({(x,0); 0 < x < 6/5} X[ —1, 1]).

Then we obtain a new intersection point b,. Q.E.D.
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FIGURE 2

4. Proof of theorem and corollary. Let X1 Xy X3 € Hy(M; Z) be homology
classes such that x, - %; =0 for i #j. Represent x,, X2, X3 by smoothly im-
mersed generic 2-spheres S, S, S;, and let p{¥), Y9, A{Y) be as in §3, but
we do not require the condition WON Y = Asp orj» k). The
Whitney disk A{"”} is oriented as in Figure 3. Now the Matsumoto triple
(X, X3, X3 is defined as follows:
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{x)y X2 X3) = 2 Sy- A*m} + E AR AE'” + 2 S;3- *39'2}
A m v

A1) . gA(12) (1,2}, 2,3)
[ v + 2 aﬁ, BA{
e S] vA S2
AR - ALY
__L_L mod I,
Ap S5

where S, - A{>?), etc., denote the intersection number of S, and A, etc,
and (3A(>") - 9A{"?)/S,, etc. denote the intersection number of dA{*") and
3A("?) on S, etc.

)

q J\{i.f}

{i,i}
T ” ;\[i}f}

GN=(@1,2),(2,3).6,1)
FIGURE 3

PrROOF OF THEOREM. Let x,, x,, X3 € Hy(M; Z) be homology classes such
that x, - x; = 0 for i #j and {x,, X;, X3) = 0 € Z/I. Let S, v{, A{Y) be as
above. Now we assume as in §3 that y{¥) N Y5 = SN\ # porj #k) then
the Matsumoto triple {x;, X,, x5 is defined as

S5, AR + 3 S, AR + 38, A2,
A m v

We may assume that this sum is zero. In fact, if the ideal I is {0}, it is always
zero. If I is not {0}, there exist homology classes y;, ¥, 3 € Hy(M; Z) such
that (x;, Xp, X3) = X"y + X2 Y2 + X3° V3 Let F,, F,, F, be immersed 2-
spheres representing y,, y,, 3. Make connected-sums of A{>* and — F,, AP*Y
and — F,, A{"? and —F;, where —F is an immersed 2-sphere with the
reversed orientation. Then if we use the resulting immersed disks instead
of A2, AP, A{*?), the sum is zero. We may assume that every Whitney
disk is good in the sense of §2 and that there is no mutual-intersection of
Whitney disks (and even there is no self-intersection of Whitney disks, i.e.
every Whitney disk is an imbedded disk). (See proof of lemma.) As X, - x3 =
0, we may assume S; N S; = & by the proposition. Escaping the intersection
S, N int A{*?) across y{}”), we obtain a new immersed 2-sphere S{, so that
Si N int A{*» = @& and S| N S, = . Using A{*?, do Whitney’s trick for S;
and S, across v{}*), and we shall obtain a new immersed 2-sphere S; such
that S| N S = &. By Lemma, we may assume that S; N AR =0 for
A = 1. Then S - A{*» = 0. Using Devices 1,2 and 3, we obtain S| N AZ?
= &. Now we can do Whitney’s trick for S; and S3 (using Device 2), and we
obtain the required maps. Q.E.D.
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PROOF OF COROLLARY. If one of x,, Xy X3 is 0, then this follows im-
mediately from the proposition. If one of Xy, Xp, X3, S&Y X, is a primitive
element, i.. there is no homology class x € H)(M; Z) such that x, = mx
(m € Z, #1, —1), then there exists a homology class y € H,(M; Z) such
that x; -y = 1. Therefore (X}, X3, X3 =0 mod I = (1) and they can be
separated by the theorem. If x,, x,, x; can be separated, also mx,, x,, X, can
be separated by using the “self-connected-sum” of the immersed 2-sphere
representing x;, (m € Z). Q.E.D.
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