Non-Kähler Complex Geometric Structures on Homogeneous Spaces

Keizo Hasegawa

January, 2015, Okayama

Partially based on joint works with Kamishima, and with Alekseevsky and Cortés

Introduction.

We first recall the definition of Kähler and pseudo-Kähler structure.

On a C^{∞} manifold M, let us consider a C^{∞} triple structure $\{J, g, \omega\}$ defined on $V = T_p(M)$ for each $p \in M$, where J is a complex structure (a linear automorphism such that $J^2 = -I$), g is a pseudo-Riemannian metric (non-degenerate symmetric bilinear form), and ω is a symplectic form (a non-degenerate skew-symmetric bilinear form), satisfying the compatibility condition

$$\omega(JX,JY) = \omega(X,Y), \ \omega(X,Y) = g(JX,Y)$$

for all $X, Y \in V$. Note that $\{J, g, \omega\}$ also satisfy

$$g(JX,JY) = g(X,Y), \ g(X,Y) = \omega(X,JY).$$

Since g and ω are non-degenerate bilinear form, we have linear isomorphisms $\phi_g, \phi_\omega : V \to V^*$. We can express compatibility condition of $\{J, g, \omega\}$ as the following commutative diagrams.

In particular, a triple $\{J, g, \omega\}$ is determined by two of J, g, ω .

Remark. For any symplectic form ω , there exists a complex structure J such that $g(X, Y) = \omega(X, JY)$ is positive definite.

We impose the integrability condition for complex structure Jand symplectic structure ω .

• For a C^{∞} complex structure J on M, J defines a complex structure on M, making M a complex manifold. For instance, the

Nijenhuis tensor

 $N_J(X,Y) = [JX, JY] - [X,Y] - J[X,JY] - J[JX,Y]$

vanishes for all vector fields X, Y on M.

• For a C^{∞} symplectic structure ω on M, ω is closed:

$$d\omega = 0$$

A C^{∞} triple $\{J, g, \omega\}$ on M satisfying the compatibility condition and the above integrability conditions is a *pseudo-Kähler structure*; and if in addition g is positive definite, it is a *Kähler structure*. If we impose only the first integrability condition, then it is a *pseudo-Hermitian structure*; and a *Hermitian structure* respectively. **Remark.** For a fixed Riemannian metric (pseudo-Riemannian metric) g, a triple $\{J, g, \omega\}$ is Kähler (pseudo-Kähller) if and only if either one of the following conditions issatisfied.

(1)
$$\nabla_g J = 0,$$
 (2) $\nabla_g \omega = 0,$

where ∇_g is a Riemannian (pseudo-Riemannian) connection.

Examples. A complex projective space $\mathbb{C}P^1$ is a quotient manifold of $W = \mathbb{C}^2 - \{O\}$ by the action of \mathbb{C}^* ,

$$\phi_{\lambda}: (z_1, z_2) \to (\lambda z_1, \lambda z_2) \ (\lambda \in \mathbf{C}^*).$$

On the other hand, a Hopf surface S is a quotient manifold of W by the action of \mathbf{Z}

$$\psi_t : (z_1, z_2) \to (\mu^t z_1, \mu^t z_2) \ (t \in \mathbf{Z}),$$

for some $\mu \in \mathbf{C}^*$ $(|\mu| > 1)$. Since $\Gamma = \{\mu^t \mid t \in \mathbf{Z}\}$ is a discrete subgroup of \mathbf{C}^* and \mathbf{C}^*/Γ is a complex torus $T_{\mathbf{C}}{}^1$, S is a $T_{\mathbf{C}}{}^1$ bundle over $\mathbf{C}P^1$. Consider a (1, 1)-form on W,

$$\omega = -i \left(dz_1 \wedge d\overline{z_1} + dz_2 \wedge \overline{z_2} \right),$$

and put

$$\Omega = \frac{1}{|z_1|^2 + |z_2|^2} \,\omega,$$

then Ω defines a real 2-form on S. Ω is not closed, but satisfies

 $d\,\Omega = \theta \wedge \Omega,$

with

$$\begin{split} \theta &= -\frac{1}{|z_1|^2 + |z_2|^2}(z_1d\overline{z_1} + z_2d\overline{z_2} + \overline{z_1}dz_1 + \overline{z_2}dz_2).\\ \text{For }\psi(X) &= \theta(JX) \text{, if we defines }\overline{\omega} = d\psi \text{, then} \end{split}$$

$$\overline{\omega} = \frac{-i}{(|z_1|^2 + |z_2|^2)^2} (|z_2|^2 dz_1 \wedge d\overline{z_1} + |z_1|^2 dz_2 \wedge d\overline{z_2} - \overline{z_1} z_2 dz_1 \wedge d\overline{z_2} - \overline{z_2} z_1 dz_2 \wedge d\overline{z_1})$$

which is so called Fubini-Study form. In the affine coordinates $z=\frac{z_2}{z_1},\,\overline{\omega}$ is expressed as

$$\overline{\omega} = \frac{-i}{(1+|z|^2)^2} \, dz \wedge d\overline{z}$$

We can express $\mathbb{C}P^1$ and Hopf surface S as homogeneous complex manifolds.

Since $G = SL_2(\mathbf{C})$ acts on $\mathbf{C}P^1$ transitively, we have

$$\mathbf{C}P^1 = G/B,$$

where B is a Borel subgroup of G:

$$B = \left\{ \begin{pmatrix} \alpha & \gamma \\ 0 & \beta \end{pmatrix} | \alpha, \beta \in \mathbf{C}^*, \alpha\beta = 1, \gamma \in \mathbf{C} \right\}$$

Consider a subgroup B_{μ} of B

$$B_{\mu} = \left\{ \begin{pmatrix} \mu^{t} & \gamma \\ 0 & \mu^{-t} \end{pmatrix} | \, \mu, \gamma \in \mathbf{C}, \, |\mu| > 1, t \in \mathbf{Z} \right\}.$$

Then we have $S = G/B_{\mu}$, and B/B_{μ} is a complex torus $T_{\mathbf{C}}^{1}$. S is a hilomorphic fiber bundle over $\mathbf{C}P^{1}$ with fiber $T_{\mathbf{C}}^{1}$.

Homogeneous structures.

Let M be a homogeneous space of Lie group G. We can express M as G/H, where G is a simply connected Lie group, H a closed subgroup of G. Let H_0 be the identity component of H.

Then, $\overline{M} = G/H_0$ is simply connected and a principal bundle over M = G/H with structure group $\Gamma = H/H_0$ (the fundamental group of M) acting on \overline{M} on the right.

We also consider the case when a discrete subgroup Γ of G is acting freely and properly discontinuously on \widehat{M} on the left. In this case M can be considered as $\Gamma \setminus G/H_0$ (double coset space), which defines a *locally homogeneous space*.

Definitions.

- A homogeneous complex structure on M = G/H₀ is defined by an integrable complex structure J on g/h, which satisfies the condition Jad(X) = ad(X)J for X ∈ h.
- A homoegenous complex structure J on M is a homogeneous complex structure on M which is invariant by the right action of Γ. It may be defined as an integrable complex structure on J on g/h satisfying the condition JAd(h) = Ad(h)J for h ∈ H.
- If a discrete subgroup Γ of G is acting freely and properly discontinuously on M on the left, a homogeneous complex structure J on M defines a complex structure on M = Γ\G/H₀, which is called a *locally homogeneous complex structure* on M.

• *M* is a *homogeneous complex Kähler manifold*, if *M* is a homogeneous complex manifold *G*/*H* which admits a Kähler structure.

- M is a homogeneous Kähler manifold, if it is a homogeneous complex Kähler manifold G/H and the Kähler structure is invariant by the action of G on the left.
- If a discrete subgroup Γ of G acts freely and properly discontinuously on a simply connected homogeneous Kähler manifold G/K on the left, it defines a *locally homogeneous (or left-invariant)* Kähler structure on M = Γ\G/K, where K is a compact subgroup of G.

Compact homogeneous and locally homogeneous Kähler manifolds.

Theorem (Matsushima, Borel-Remmert). A compact homogeneous complex Kähler manifold is biholomorphic to a product of a complex torus and a flag manifold.

Remark. We have a class of compact locally homogeneous Kähler manifolds which do not admit any homogeneous Kähler structures: $G =: \mathbb{C}^l \rtimes \mathbb{R}^{2k}$, where the action $\phi : \mathbb{R}^{2k} \to \operatorname{Aut}(\mathbb{C}^l)$ is defined by

 $\phi(\bar{t}_i)((z_1, z_2, \dots, z_l)) = (e^{\sqrt{-1}\eta_1^i t_i} z_1, e^{\sqrt{-1}\eta_2^i t_i} z_2, \dots, e^{\sqrt{-1}\eta_l^i t_i} z_l),$ where $\bar{t}_i = t_i e_i$ (e_i : the *i*-th unit vector in \mathbf{R}^{2k}), and $e^{\sqrt{-1}\eta_j^i}$ is the s_i -th root of unity, $i = 1, \dots, 2k, j = 1, \dots, l$. If an abelian lattice \mathbf{Z}^{2l} of \mathbf{C}^{l} is preserved by the action ϕ on \mathbf{Z}^{2k} , then $M = \Gamma \setminus G$ defines a solvmanifold, where $\Gamma = \mathbf{Z}^{2l} \rtimes \mathbf{Z}^{2k}$ is a lattice of G.

The Lie algebra \mathfrak{g} of G is the following:

$$\mathfrak{g} = \{X_1, X_2, \dots, X_{2l}, X_{2l+1}, \dots, X_{2l+2k}\}_{\mathbf{R}},\$$

where the bracket multiplications are defined by

$$[X_{2l+2i}, X_{2j-1}] = -X_{2j}, [X_{2l+2i}, X_{2j}] = X_{2j-1}$$

for $i = 1, \dots, k, j = 1, \dots, l$, and all other brackets vanish.

The canonical left-invariant complex structure is defined by

$$JX_{2j-1} = X_{2j}, JX_{2j} = -X_{2j-1},$$

$$JX_{2l+2i-1} = X_{2l+2i}, JX_{2l+2i} = -X_{2l+2i-1}$$

for $i = 1, \dots, k, j = 1, \dots, l.$

Notes.

- The class of complex surfaces with l = k = 1 in the above example coincides with the class of hyperelliptic surfaces.
- A compact solvmanifold admits a Kähler structure if and only if it belongs to the above class of compact locally homogeneous Kähler solvmanifolds.
- It is well known that a simply connected homogeneous Kähler manifold is biholomorphic to C^k × S × D, where S is a flag manifold, which is a projective manifold, D is a bounded homogeneous domain.
- We conjecture that a compact locally homogeneous Kähler manifold is, up to finite covering, biholomorphic to $T^k_{\mathbf{C}} \times S \times \Gamma \backslash D$, where D is a symmetric bounded domain.

Compact homogeneous and locally homogeneous pseudo-Kähler manifolds.

Theorem (Dorfmeister-Guan). A compact homogeneous pseudo-Kähler manifold is biholomorphic to a product of a complex torus and a flag manifold.

Remark. There is an example of a compact locally homogeneous pseudo-Kähler manifold which do not admit any homogeneous pseudo-Kähler structures: $G = N_3 \times \mathbf{R}$, where N_3 is the Heisenberg Lie group of dimension 3. The Lie algebra \mathfrak{g} is generated by X, Y, Z, W with only non-zero bracket multiplication [X, Y] = -Z. An integrable complex structure J is defined by JX = Y, JZ = W. $\Omega = y \wedge z + w \wedge x$ defines a pseudo-Kähler structure on $S = \Gamma \setminus G$ for a suitable lattice Γ (Kodaira surface).

Hermitian and pseudo-Hermitian manifolds.

Definition. A Hermitian manifold M is *Hermitian symmetic* if each point $p \in M$ is an isolated fixed point of an involutive holomorphic isometry s_p of M.

- A *Hermitian symmetic space* M is a Riemannian symmetric space $\{M; g\}$ with its compatible complex structure J, defining a Kähler structure on M. It is a simply connected homogeneous Kähler manifold.
- A Hermitian symmetic space M is *irreducible* if it is irreducible as a Riemannian symmetric space (i.e. the holonomy representation is irreducible).

There are two types, *non-compact type* and *compact type*, of irreducible Hermitian symmetric spaces.

- If M is of non-compact type, then it can be written as G/H (effectively), where G is a connected non-compact simple Lie group with center $\{e\}$ and H is a maximal compact subgroup of G which has non-discrete center Z_H .
- If M is of compact type, then it can be written as G/H (effectively), where G is a connected compact simple Lie group with center $\{e\}$ and H is a maximal connected proper subgroup of G which has non-discrete center Z_H .

Let \mathfrak{g} be the Lie algebra of G and \mathfrak{h} that of H. Then we have the standard decomposition of \mathfrak{g} :

 $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ (as a vector space),

where $\mathfrak{h} = \{X \in \mathfrak{g} | \sigma X = X\}$, $\mathfrak{m} = \{X \in \mathfrak{g} | \sigma X = -X\}$, and $\mathfrak{h} = [\mathfrak{m}, \mathfrak{m}]$ is isomorphic to the holonomy algebra $ad_{\mathfrak{m}}[\mathfrak{m}, \mathfrak{m}]$.

Any G-invariant complex structure on M is considered as $J\in GL(\mathfrak{m}),$ satisfying the following conditions:

(1)
$$J^2 = -1$$
.
(2) $J \cdot ad_m X = ad_m X \cdot J$ for every $X \in \mathfrak{h}$.
(3) $[JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] = 0$ for all $X, Y \in \mathfrak{m}$.

We know that for an irreducible Hermitian symmetric space, the complex structure $J \in GL(\mathfrak{m})$ is of the form $J = ad_{\mathfrak{m}}Z$ for some $Z \in \mathfrak{z}_{\mathfrak{h}}$. Since Z_H is actually a cyclic group with the Lie algebra $\mathfrak{z}_{\mathfrak{h}}$ of dimension 1, we have only two *G*-invariant complex structure J and -J, which are compactible with the Riemannian metric.

Conjecture (Burstall-Rawnsley). An irreducible Hermitian symmetric space $\{M, g, J\}$ admit no compatible complex structure structure J and -J.

They showed that the conjecture holds for Hermitian symmetric spaces of compact type. The proof is based on Twistor theory of symmetic spaces they have developed. We have a counter-example to the conjecture for Hermitian symmetric spaces of non-compact type. For a non-compact simple Lie group G, we have Iwasawa decomposition: G = SH, where S is a simply connected solvable Lie group (called the *Iwasawa group*).

S acts simply-transitively on the Hermitian symmetric space M = G/H. Hence, M can be considered as a homogeneous Kähler solvable Lie group.

Let \mathfrak{s} be the Lie algebra of S. Then \mathfrak{s} is a *non-unimodular* and *split* solvable Lie algebra, and has a so-called *normal J-algebra* structure, which is defined as follows:

Definition. A normal *J*-algebra is a solvable Lie algebra with an inner product <,> and a complex structure $J \in GL(\mathfrak{s})$ $(J^2 = -1)$, satisfying the following conditions:

$$(\mathsf{i}) < JX, JY > = < X, Y > \text{ for all } X, Y \in \mathfrak{s}.$$

- (ii) < [X, Y], JZ > + < [Y, Z], JX > + < [Z, X], JY >= 0for all $X, Y, Z \in \mathfrak{s}$.
- (iii) [JX, JY] J[JX, Y] J[X, JY] [X, Y] = 0 for all $X, Y, Z \in \mathfrak{s}$.
- (iv) $ad_{\mathfrak{s}}X$ has only real eigenvalues for all $X \in \mathfrak{s}$.
- (v) there is a linear form ω such that $\langle X, Y \rangle = \omega[JX, Y]$.

A solvable Lie algebra satisfying (i), (ii), (iii) is called a *solvable Kähler algebra*. A solvable Lie algebra satisfying (iv) is of *split* (or *completely solvable*) type.

Theorem. (due to Gindikin-Vinberg, Pyatetskii-Shariro) A split solvable Kähler algebra \mathfrak{s} is decomposed into the semi-direct sum of an abelian *J*-invariant ideal and a normal *J*-algebra.

The corresponding Lie group S is a homogeneous Kähler solvmanifold which is biholomorphic to a direct product of \mathbf{C}^k and a bounded homogeneous domain D.

Definition. J-algebras $\{\mathfrak{s}; J\}$ and $\{\mathfrak{s}'; J'\}$ are *isomorphic* if there exists a Lie algebra isomorphism $\phi : \mathfrak{s} \to \mathfrak{s}'$ such that $\phi J = J'\phi$.

Notes.

• It is known (due to Pyatetskii-Shapiro) that there exists one to one correspondence between isomorphism classes of normal *J*algebras and biholomorphic equivalence classes of bounded homogeneous domains.

 It is known (due to Dotti-Miatello) that irreducible normal Jalgebras {\$\varsigma; J\$} and {\$\varsigma'; J'\$} are *isomorphic* up to sign if and only if solvable Lie algebras \$\varsigma\$ and \$\varsigma'\$ are isomorphic as Lie algebras.

Observation. There exists one to one correspondence between complex structures J on a solvable Lie algebra \mathfrak{g} and complex Lie subalgebras \mathfrak{h} which satisfy $\mathfrak{g}_{\mathbb{C}} = \mathfrak{h} \oplus \overline{\mathfrak{h}}$, given by $J \to \mathfrak{h}_J$ and $\mathfrak{h} \to J_{\mathfrak{h}}$, where $\mathfrak{h} = \{X + \sqrt{-JX} | X \in \mathfrak{g}\}.$

For a complex structure J, the complex Lie subgroup H_J of $G_{\mathbf{C}}$ corresponding to \mathfrak{h}_J is closed, simply connected, and $G_{\mathbf{C}}/H_J$ is biholomorphic to \mathbf{C}^m .

The canonical inclusion $\mathfrak{g} \hookrightarrow \mathfrak{g}_{\mathbf{C}}$ induces an inclusion $G \hookrightarrow G_{\mathbf{C}}$,

and $\Gamma = G \cap H_J$ is a discrete subgroup of G. We have the following canonical map $g = i \circ \pi$:

$$G \xrightarrow{\pi} G/\Gamma \xrightarrow{i} G_{\mathbf{C}}/H_J,$$

where π is a covering map, and i is an inclusion. The left-invariant complex structure J on G is the one induced by g from an open set $U = \operatorname{Im} g \subset \mathbb{C}^m$.

Example. Let \mathfrak{s}_{m+1} be a solvable Lie algebra of dimension 2m + 2 with a basis $\beta = \{X_i, Y_j, Z, W\}$ for which the bracket multiplications are defined by

$$[X_i, Y_i] = -Z, \ [W, X_j] = \frac{1}{2}X_j, \ [W, Y_k] = \frac{1}{2}Y_k, \ [W, Z] = Z,$$
 where $i, j, k = 1, ..., m$, and all other brackets are 0.

We can express \mathfrak{s}_{m+1} as the semi-direct sum of a nilpotent

ideal \mathfrak{n}_m generated by $X_i, Y_j, Z, i, j = 1, ..., m$ and an abelian Lie algebra \mathfrak{w} generated by $\{W\}$.

The inner product <,> is defined with respect to which β is an orthonormal basis.

The complex structure J is defined by

$$JW = Z, JZ = -W, JX_i = Y_i, JY_j = -X_j,$$

where i, j = 1, ..., m.

It is easy to check that J is integrable, and a linear form ω defined by

$$\omega(Z) = 1, \omega(X_i) = \omega(Y_j) = \omega(W) = 0,$$

satisfies $\langle A, B \rangle = \omega([JA, B])$ for any $A, B \in \mathfrak{s}_{m+1}$; and thus $\{\mathfrak{s}_{m+1}; J\}$ is a (irreducible) normal *J*-algebra.

We now take another complex structure J_k on \mathfrak{s}_{m+1} . The complex structure J_k , k = 1, 2, ..., m is defined by

$$J_k W = Z, J_k Z = -W, J_k X_i = Y_i, J_k Y_i = -X_i, i = 1, 2, ..., k$$
 and

$$J_k X_j = -Y_j, J_k Y_j = X_j, j = k + 1, 2, ..., m,$$

then J_k is compatible with the inner product and integrable, but the condition (ii) of normal J-algebra does not hold (Kähler form is not closed).

We see that the complex subalgebra \mathfrak{h} and \mathfrak{h}_k of $\mathfrak{s}_{\mathbf{C}}$ corresponding to J and J_k is given by,

$$\mathfrak{h} = \{W + \sqrt{-1}Z, X_1 + \sqrt{-1}Y_1, X_2 + \sqrt{-1}Y_2, \dots, X_m + \sqrt{-1}Y_m\}_{\mathbf{C}}, \\\mathfrak{h}_k = \{W + \sqrt{-1}Z, \dots, X_k + \sqrt{-1}Y_k, X_{k+1} - \sqrt{-1}Y_{k+1}, \dots, X_m - \sqrt{-1}Y_m\}_{\mathbf{C}}\}_{\mathbf{C}}$$

where $[W + \sqrt{-1}Z, X_i \pm \sqrt{-1}Y_i] = \frac{1}{2}(X_i \pm \sqrt{-1}Y_i)$, i = 1, 2, ..., m.

The corresponding Lie group S_{m+1} is expressed as

$$S_{m+1} = H_m \rtimes \mathbf{R},$$

where H_m is the Heisenberg group and the action ϕ : $\mathbf{R} \rightarrow \operatorname{Aut}(H_k)$ is defined by

$$\phi(s): \begin{pmatrix} 1 \ \mathbf{x} \ z \\ 0 \ \mathbf{I}_m \ \mathbf{y}^t \\ 0 \ 0 \ 1 \end{pmatrix} \to \begin{pmatrix} 1 \ e^{\frac{1}{2}s} \mathbf{x} \ e^s z \\ 0 \ I_m \ e^{\frac{1}{2}s} \mathbf{y}^t \\ 0 \ 0 \ 1 \end{pmatrix}$$

The complex subgroup \mathscr{H}_k of $S_{\mathbf{C}}$ corresponding to \mathfrak{h}_k is expressed as a semi-direct product $\mathscr{H}_k = \mathscr{U}_k \rtimes \mathscr{V}$, where

$$\begin{split} \mathscr{U}_k = \begin{pmatrix} 1 & \mathbf{u} & \frac{1}{2}\sqrt{-1} \|\mathbf{u}\|_k \\ 0 & \mathbf{I}_m & \sqrt{-1}\varepsilon_k \mathbf{u}^t \\ 0 & 0 & 1 \end{pmatrix}, & k = 1, 2, ..., m, \\ \\ \mathscr{V} = \begin{pmatrix} \begin{pmatrix} 1 & 0 & \sqrt{-1}(e^s - 1) \\ 0 & \mathbf{I}_m & 0 \\ 0 & 0 & 1 \end{pmatrix}, s), \\ \mathbf{u} \in \mathbf{C}^m, s \in \mathbf{C}, \ \|\mathbf{u}\|_k = \mathbf{u}\epsilon_k \mathbf{u}^t \ (\epsilon_k = \begin{pmatrix} \mathbf{I}_{m-k} & 0 \\ 0 & -\mathbf{I}_k \end{pmatrix}). \text{ Note } \\ \text{that } \mathscr{U}_k \text{ is an abelian subgroup of } S_{\mathbf{C}} \text{ and } \mathscr{V} \text{ is a 1-parameter } \\ \text{subgroup of } S_{\mathbf{C}} \text{ corresponding to } W + \sqrt{-1}V. \\ \\ \text{Define } \phi_k : S_{\mathbf{C}} \to \mathbf{C}^{m+1} \text{ by} \end{split}$$

$$\begin{pmatrix} 1 & \mathbf{u} & z \\ 0 & \mathbf{I}_m & \mathbf{v}^t \\ 0 & 0 & 1 \end{pmatrix}, s) \to (\mathbf{u} + \sqrt{-1}\epsilon_k \mathbf{v}, (<\mathbf{u}, \mathbf{v} > -2z) + \sqrt{-1}(\frac{1}{2}(\|\mathbf{u}\|_k^2 + \|\mathbf{v}\|_k^2) + 2e^s)).$$

Then, ϕ_k induces a biholomorphic map $\overline{\phi}_k : S_{\mathbf{C}}/\mathscr{H}_k \to \mathbf{C}^{m+1}$, and the image of S_{m+1} is the open subset of \mathbf{C}^{m+1} :

$$\mathscr{S}_{k} = \overline{\phi}_{k}(S_{m+1}) = \{ (\mathbf{z}, w) \in \mathbf{C}^{m+1} \, | \, \mathrm{Im} \, w > \frac{1}{2} \| \mathbf{z} \|_{k}^{2} \}.$$

We know that \mathscr{S}_0 is biholomorphic to $D_{m+1} = \{(\mathbf{z}, w) | ||\mathbf{z}||^2 + |w|^2 < 1\}$, which is a complex hyperbolic (m + 1)-space (or a Siegel domain of type II). And we can see that \mathscr{S}_m is biholomorphic to $D'_{m+1} = \{(\mathbf{z}, w) \in \mathbf{C}^{m+1} | \operatorname{Im} w < \frac{1}{2} ||\mathbf{z}||^2\}$, which can be

considered as $\mathbb{CP}^{m+1} - \overline{D}_{m+1} \cup \mathscr{P}$, where \mathscr{P} is a projective *m*-plane tangent to the boundary of D_{m+1} .

Remark. The homogeneous complex solvmanifold $\mathscr{S}_k = \{S_{m+1}; J_k\}$ is non-Kähler in any S_{m+1} -invariant metric: Suppose it admits a S_{m+1} -invariant Kähler metric. Then $\{s_{m+1}; J_k\}$ defines an irreducible split solvable Kähler algebra. Since \mathfrak{s}_{m+1} has no J_k -invariant abelian ideal, it is an irreducible normal J-algebra. But then, according to the above result of Dotti-Miatello, we must have $J_k = J$, or -J. In particular, \mathscr{S}_k is not biholomorphic to $\mathscr{S}_0 = \{S_{m+1}; \pm J\}$.

Strongly KT structure.

Definition. A strongly Kähler with torsion structure (or shortly *SKT structure* on a differentiable manifold M is a Hermitian structure $\{h, J\}$ on M with its associated fundamental form Ω satisfying $\partial \overline{\partial}\Omega = 0$ or equivalently $d d^c \Omega = 0$, where $d^c = \sqrt{-1}(\partial - \overline{\partial})$. In terms of the *Bismut connection* (the unique metric connection ∇ with respect to which J is parallel, $\nabla J = 0$ and its torsion 3-form $c(X, Y, Z) = g(X, T^{\nabla}(Y, Z))$ is skew-symmetric), the condition $\partial \overline{\partial}\Omega = 0$ is equivalent to dc = 0 where c is actually given by $c = -Jd\Omega$.

Note.

• It is known (due to Gauduchon) that any compact Hermitian manifold of dimension 4 admits a SKT structure in the conformal

class of the given Hermitian metric.

- For a compact (non-Kähler) Hermitian manifold of dimension greater than 6, SKT structure and LCK structure (which will be defined next) are mutually exclusive (due to Alexandrov and Ivanov).
- For a bi-Hermitian manifold $\{M, h, J_{\pm}\}$ with its associated fundamental forms Ω_+, Ω_- satisfying that $d^c_+\Omega_+ = -d^c_-\Omega_- = 0$ is *d*-closed, both $\{h, J_+\}$ and $\{h, J_-\}$ define STK structures on M.
- Any compact Lie group of even dimension admits a homogeneous SKT structure (due to Spindel et al).

Locally conformally Kähler structure.

Definition. A locally conformally Kähler structure (or shortly *LCK structure*) on a differentiable manifold M is a Hermitian structure (h, J) on M with its associated fundamental form Ω satisfying $d\Omega = \theta \wedge \Omega$ for some closed 1-form θ (which is called *Lee form*).

Note.

A LCK structure Ω is locally conformally Kähler, in the sense that there is a open covering {U_i} of M such that Ω_i = e^{-σ_i}Ω is Kähler form on U_i for some functions σ_i, that is, dΩ_i = 0. The condition dΩ = θ ∧ Ω is equivalent to the existence of a global close 1-form θ such that θ|U_i = dσ_i.

• A LCK structure Ω is globally conformally Kähler (or Kähler) if and only if θ is exact (or 0 respectively).

Definition. A homogeneous locally conformally Kähler (or homogeneous l.c.K) manifold M is a homogeneous Hermitian manifold with its homogeneous Hermitian structure h, defining a locally conformally Kähler structure Ω on M.

Definition. If a simply connected homogeneous LCK manifold M = G/H, where G is a connected Lie group and H a closed subgroup of G, admits a free action of a discrete subgroup Γ of G on the left, then we call a double coset space $\Gamma \setminus G/H$ a *locally homogeneous LCK manifold*.

Observation. Classification of non-Kähler complex surfaces with $b_2 = 0$ is known: *Kodaira surfaces, Inoue surfaces, properly elliptic surfaces of odd type or Hopf surfaces.* Except for the class of Hopf surfaces with eigenvalues λ_1, λ_2 ($|\lambda_1| \neq |\lambda_2|$), all of these non-Kähler complex surfaces, up to small deformations, admit either homogeneous or locally homogeneous LCK structures.

In fact, we can express each of these LCK complex surfaces S as $\Gamma \setminus G$ (up to finite covering), where G is a 4-dimensional Lie group with lattice Γ which admits homogeneous l.c.K structures.

It is known (due to Brunella) that Kato surfaces, which are non-Kähler complex surfaces with $b_2 > 0$, also admit LCK structures. There is a conjecture that Kato surfaces exhaust all non-Kähler complex surfaces with $b_2 > 0$. The following is a list of all 4-dimensional unimodular Lie algebras \mathfrak{g} with LCK structure, defining LCK complex surfaces, where the Lie algebra \mathfrak{g} is generated by X, Y, Z, W with only non-zero bracket multiplication specified.

(1) Primary Kodaira surface: [X, Y] = -Z

(2) Secondary Kodaira surface: [X, Y] = -Z, [W, X] = -Y, [W, Y] = X

(3) Inoue surface S^{\pm} :

[Y, Z] = -X, [W, Y] = Y, [W, Z] = -Z

(4) Inoue surface S^0 : $[W, X] = -\frac{1}{2}X - bY, \ [W, Y] = bX - \frac{1}{2}Y, \ [W, Z] = Z$ (5) Properly elliptic surface: [X, Y] = -Z, [Z, X] = Y, [Z, Y] = -X

(6) Hopf surface:

$$[X, Y] = -Z, [Z, X] = -Y, [Z, Y] = X$$

For all cases, we have a complex structure defined by

$$JX = -Y, JY = X, JZ = -W, JW = Z,$$

and its compatible LCK form $\Omega = x \wedge y + z \wedge w$ with the Lee form $\theta = w$, where x, y, z, w are the Maurer-Cartan forms corresponding to X, Y, Z, W respectively.

Notes.

• For Inoue surfaces of type $S^+,$ we have other complex structures on \mathfrak{g} :

$$JX = Y, JY = -X, JZ = W - qY, JW = -Z - qX,$$

with no-zero real number q, defining a complex structure on S^+ for which there exist no compatible LCK structures (due to Belgun).

 \bullet For Hopf surfaces, we have other complex structures on $\mathfrak g$

$$JX = Y, JY = -X, JZ = W + dZ, J(W + dZ) = -Z,$$

with no-zero real number d, defining a homogeneous LCK structure on Hopf surface, as we will discuss in detail later.

Generalization of some of the above LCK complex surfaces to the higher dimension.

(i) Let \mathfrak{h}_{2n+1} be the Heisenberg Lie algebra of dimension 2n+1, which is a nilpotent Lie algebra generated by $X_1, X_2, ..., X_n$, $Y_1, Y_2, ..., Y_n, Z$ with non-zero bracket multiplication:

$$[X_i, Y_i] = -Z, i = 1, 2, ..., n.$$

A nilpotent Lie algebra $\mathfrak{g} = \mathbf{R}^1 \times \mathfrak{h}_{2n+1}$ admits a LCK structure Ω :

$$\Omega = z \wedge w + \sum_{i=1}^{n} x_i \wedge y_i$$

with the Lee form $\theta = w$, where x_i, y_j, z, w are the Maure-Cartan forms corresponding to X_i, Y_j, Z, W respectively; and a complex struture J:

$$JZ = W, JW = -Z, JX_i = Y_i, JY_i = -X_i, i = 1, 2, ..., n.$$

The corresponding Lie group G admits a lattice Γ , defining a locally homogeneous LCK structure on its compact quotient space $\Gamma \setminus G$. This is a generalization of primary Kodaira surface.

(ii) Let \mathfrak{g} be a solvable Lie algebra of dimension 2n+2, generated by $X, Y, Z_1, Z_2, ..., Z_n, W_1, W_2, ..., W_n$ with non-zero bracket multiplication:

 $[W_i, X] = -\frac{1}{2}X - b_iY, [W_i, Y] = b_iX - \frac{1}{2}Y, [W_i, Z_j] = \frac{1}{n}Z_j,$ where i = 1, 2, ..., n, j = 1, 2, ..., n. The solvable Lie algebra \mathfrak{g} admits a LCK structure Ω :

$$\Omega = x \wedge y + n \sum_{i,j=1}^{n} z_i \wedge w_j,$$

with the Lee form $\theta = \frac{1}{n} \sum_{i=1}^{n} w_i$, where x, y, z_i, w_j are the Maure-Cartan forms corresponding to X, Y, Z_i, W_j respectively; and a complex structure J:

$$JX = Y, JW = -Z, JZ_i = W_i, JW_i = -Z_i, i = 1, 2, ..., n.$$

The corresponding Lie group G admits a lattice Γ (due to Oeljeklaus-Toma), defining a locally homogeneous LCK structure on its compact quotient space $M = \Gamma \backslash G$. This is a generalization of Inoue surface S^0 . We have $b_1(M) = \dim H^1(\mathfrak{g}) = \dim \mathfrak{g}/[\mathfrak{g},\mathfrak{g}] = n$.

Definition. A LCK manifold M is of *Vaisman type* if its Lee form θ is parallel w.r.t. the Levi-Civita connection of h; or equivalently, the Lee field $\xi = h^{-1}\theta$ is parallel.

Definition. We define an exterior differential d_{θ} on the de Rham compex $\Lambda^*(M)$ of a LCK manifold M as

$$d_{\theta}: w \to -\theta \wedge w + dw,$$

which satisfies $d_{\theta}^2 = 0$ for $w \in \Lambda^*(M)$. We call $H_{\theta}^k(M)$ the k-th *twisted cohomology group* with respect to θ .

• For a LCK manifold M of Vaisman type, all $H^k_{\theta}(M)$ vanish (due to de León-López-Marrero-Pardón)

• For a reductive or nilpotent Lie algebra \mathfrak{g} , all $H^k_{\theta}(\mathfrak{g})$ vanish. (due to Hochschild-Serre, Diximier respectively)

Notes.

• For locally homogeneous LCK manifold $\Gamma \setminus G$, we can check whether the Lee filed ξ is parallel or not, by using the formula:

 $h(\nabla_X \xi, Y) = h([X, \xi], Y) - h([\xi, Y], X) + h([Y, X], \xi)$ for any $X, Y \in \mathfrak{g}$. Since $d\theta(Y, X) = h([Y, X], \xi) = 0$, the Lee filed ξ is parallel if and only if it is Killing.

• For locally homogeneous LCK manifold $\Gamma \setminus G$, where G is simply connected solvable Lie group, there is a canonical injection

$$H^k_{\theta}(\mathfrak{g}) \hookrightarrow H^k_{\theta}(\Gamma \backslash G).$$

(cf. Raghunathan; *Discrete subgroups of Lie groups*)

• In the above examples, (i) is of Vaisman type, and (ii) is not.

Examples.

• For secondary Kodaira surface, the Lee filed $\xi = W$, and the bracket multiplication is given by [X, Y] = -Z, [W, X] = -Y, [W, Y] = X. We get by simple calculation,

$$h(\nabla_U W, V) = h([W, U], Y) + h(U, [W, V]) = 0$$

for any $U, V \in \mathfrak{g}$. It is also easy to check $\Omega = -w \wedge z + dz$.

For Inoue surface S[±], the Lee filed ξ = W, and the bracket multiplication is given by [Y, Z] = −X, [W, Y] = Y, [W, Z] = −Z. The Lee field ξ = W is not Killing:

 $h(\nabla_Z W, Z) = h([W, Z], Z) + h(Z, [W, Z]) = -2h(Z, Z) \neq 0.$

It is also easy to check that there is no invariant 1-form v such that $\Omega = -w \wedge v + dv$; and thus no such 1-form v on S^{\pm} .

Definitions.

- A contact metric structure $\{\phi, \eta, \widetilde{J}, g\}$ on M^{2n+1} is a contact structure $\phi, \phi \wedge (d\phi)^n \neq 0$ with the Reeb field $\eta, i(\eta)\phi =$ $1, i(\eta)d\phi = 0$, a (1, 1)-tensor $\widetilde{J}, \widetilde{J}^2 = -I + \phi \otimes \eta$ and a Riemannian metric $g, g(X, Y) = \phi(X)\phi(Y) + d\phi(X, \widetilde{J}Y)$.
- A Sasaki structure on M^{2n+1} is a contact metric structure $\{\phi, \eta, \psi, g\}$ satisfying $\mathcal{L}_{\eta}g = 0$ (Killing field) and the integrability of $J = \widetilde{J}|\mathcal{D}$ on $\mathcal{D} = \ker \phi$ (CR-structure).
- For any Sasaki manifold N, its Kähler cone C(N) is defined as $C(N) = \mathbf{R}_+ \times N$ with the Kähler form $\omega = rdr \wedge \phi + \frac{r^2}{2}d\phi$, where a compatible complex structure \widehat{J} is defined by $\widehat{J}\eta = \frac{1}{r}\partial_r$ and $\widehat{J}|\mathscr{D} = J$.

Note. For any Sasaki manifold N with contact form ϕ , we can define a LCK form $\Omega = \frac{2}{r^2}\omega = \frac{2}{r}dr \wedge \phi + d\phi$; or taking $t = -2\log r$, $\Omega = -dt \wedge \phi + d\phi$ on $M = \mathbf{R} \times N$ or $S^1 \times N$, which is of Vaisman type. We can define a family of complex structures J compatible with Ω by

$$J \partial_t = b \partial_t + (1 + b^2) \eta, J \eta = -\partial_t - b \eta,$$

where $b \in \mathbf{R}$ and the Lee field is $J\eta$. Conversely, any simply connected complete Vaisman manifold is of the form $\mathbf{R} \times N$ with LCK structure as above, where N is a simply connected complete Sasaki manifold.

Remark. It is known (due to Ornea and Verbitsky) that a compact Vaisman manifold is a fiber bundle over S^1 with fiber a compact Sasaki manifold.

Homogeneous and locally homogeneous LCK structures on Hopf surfaces.

Let $\mathfrak{g} = \mathfrak{u}(2) = \mathbf{R} + \mathfrak{su}(2)$ be a reductive Lie algebra with basis $\{T, X, Y, Z\}$ of \mathfrak{g} , where T is a generator of the center \mathbf{R} of \mathfrak{g} , and

$$X = \frac{1}{2} \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \ Y = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}, \ Z = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

satisfying the bracket multiplications

$$[X, Y] = Z, \ [Y, Z] = X, \ [Z, X] = Y.$$

Then g admits a family of complex structures $J_{\delta}, \delta = c + \sqrt{-1} d$ $(c \neq 0)$ defined by

$$J_{\delta}(T-dX) = cX, \ J_{\delta}(cX) = -(T-dX), \ J_{\delta}Y = \pm Z, \ J_{\delta}Z = \mp Y.$$

Homogeneous Hopf surfaces. Let $G = S^1 \times SU(2)$ (which is diffeomorphic to $S^1 \times S^3$). Then all homogeneous complex structures on G admit their compatible homogeneous LCK structures, defining a primary Hopf surfaces S_{λ} which are compact quotient spaces of the form W/Γ_{λ} , where $W = \mathbb{C}^2 \setminus \{0\}$ and Γ_{λ} is a cyclic group of holomorphic automorphisms on W generated by a contraction $f: (z_1, z_2) \to (\lambda z_1, \lambda z_2)$ with $|\lambda| \neq 0, 1$.

Proof. We consider a canonical diffeomorphism Φ_{δ} :

$$\Phi_{\delta}: \mathbf{R} \times SU(2) \longrightarrow W$$

defined by

$$(t, z_1, z_2) \longrightarrow (\lambda_{\delta}^t z_1, \lambda_{\delta}^t z_2),$$

where $\lambda_{\delta} = e^{c + \sqrt{-1} d}$ and SU(2) is identified with

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbf{C}^{2} \mid |z_{1}|^{2} + |z_{2}|^{2} = 1\} \text{ by the correspondence:}$$
$$\begin{pmatrix} z_{1} & -\overline{z}_{2} \\ z_{2} & \overline{z}_{1} \end{pmatrix} \longleftrightarrow (z_{1}, z_{2}).$$

Then we see that Φ_{δ} is a biholomorphic map. It is now clear that Φ_{δ} induces a biholomorphism between $G = S^1 \times SU(2)$ with homogeneous complex structure J_{δ} and a primary Hopf surface $S_{\lambda_{\delta}} = W/\Gamma_{\lambda_{\delta}}$. Q.E.D.

Remark. We have the Lee field $\xi = T - \frac{d}{c}X$, which is irregular for an irrational $\frac{d}{c}$, and the Reeb field $\eta = cX$, which is always regular.

Note. U(2) is a quotient Lie group of G by the central subgroup $\mathbb{Z}_2 = \{(1, I), (-1, -I)\}.$

We can also consider $= S^1 \times S^3$ as a compact homogeneous space \tilde{G}/H , where $\tilde{G} = S^1 \times U(2)$ with its Lie algebra $\tilde{\mathfrak{g}} =$ $\mathbf{R} + \mathfrak{u}(2)$ and H = U(1) with its Lie algebra \mathfrak{h} . Then, we have a decomposition $\tilde{\mathfrak{g}} = \mathfrak{m} + \mathfrak{h}$ for the subspace \mathfrak{m} of $\tilde{\mathfrak{g}}$ generated by S, T, Y, Z and \mathfrak{h} generated by W, where

$$S = \frac{1}{2} \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix}, \ W = \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{-1} \end{pmatrix}$$

Locally homogeneous Hopf surfaces. Let $\hat{G} = \mathbf{R} \times U(2)$, and let $\Gamma_{p,q} (p, q \neq 0)$ be a discrete subgroup of \hat{G} defined by

$$\Gamma_{p,q} = \{ (k, \begin{pmatrix} e^{\sqrt{-1}pk} & 0\\ 0 & e^{\sqrt{-1}qk} \end{pmatrix}) \in \mathbf{R} \times U(2) \mid k \in \mathbf{Z} \}.$$

Then $\Gamma_{p,q} \backslash \hat{G}/H$ is biholomorphic to a Hopf surface $S_{p,q} = W/\Gamma_{\lambda_1,\lambda_2}$, where $\Gamma_{\lambda_1,\lambda_2}$ is the cyclic group of automorphisms on W generated by

$$\phi:(z_1,z_2)\longrightarrow (\lambda_1z_1,\lambda_2z_2)$$
 with $\lambda_1=e^{r+\sqrt{-1}\,p}, \lambda_2=e^{r+\sqrt{-1}\,q}, r\neq 0.$

In fact, if we take a homogeneous complex structure J_r on \hat{G}/H induced from the diffeomorphism

$$\Phi_r: \hat{G}/H \to W$$

defined by

$$(t, z_1, z_2) \longrightarrow (e^{rt} z_1, e^{rt} z_2),$$

 Φ_r induces a biholomorphism between $\Gamma_{p,q} \setminus \hat{G}/H$ and $S_{p,q}$.

Homogeneous Hopf manifolds.

Let M = G/H, where $G = S^1 \times SU(n)$ and H = SU(n-1), which is diffeomorphic to $S^1 \times S^{2n+1}$. Then M admits a homogeneous LCK structure. The Lie algebra $\mathfrak{g} = \mathbf{R} + \mathfrak{s}u(n)$ has a decomposition:

$$\mathfrak{g}=\mathfrak{m}+\mathfrak{h},$$

satisfying $[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{m}$, where $\mathfrak{h} = \mathfrak{s}u(n-1)$, and \mathfrak{m} is generated by T, X, Y_i, Z_j (i, j = 1, 2, ..., n-1) with a generator T of the center \mathbf{R} , and non-zero bracket multiplications:

$$[Y_i, Z_i] = -X \mod \mathfrak{h} \ (i = 1, 2, ..., n - 1).$$

We have a LCK form Ω and the Lee form θ :

$$\Omega = t \wedge x + \sum_{i=1}^{n} y_i \wedge z_i, \ \theta = t.$$

As in the case n = 1, g admits a family of complex structures $J_{\delta}, \delta = c + \sqrt{-1} d$ defined by $J_{\delta}(T-dX) = cX, \ J_{\delta}(cX) = -(T-dX), \ J_{\delta}Y_i = Z_i, \ J_{\delta}Z_i = -Y_i,$ where $c \neq 0, \ i = 1, 2, ..., n - 1$, defining a homogeneous LCK structure of Vaisman type on M.

Note. $S^{2n+1} = SU(n)/SU(n-1)$ admits a homogeneous Sasaki structure: we have a Hopf fibration $S^{2n+1} \to \mathbb{CP}^n$ with fiber $S^1 = U(n-1)/SU(n-1)$ and the base space $\mathbb{CP}^n = SU(n)/U(n-1)$. It has a homogeneous contact form x, defining a Kähler structure $\omega = dx$ on \mathbb{CP}^n defined by

$$\omega = \sum_{i=1}^{n} y_i \wedge z_i.$$

Structure of compact homogeneous LCK manifolds

Theorem. A compact homogeneous LCK manifold M is biholomorphic to a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus $T^{1}_{\mathbf{C}}$. And its LCK structure is of Vaisman type.

To be more precise, we can express M as a homogeneous space form G/H, where G is a compact connected Lie group of holomorphic isometries on M which is of the form

 $G = S^1 \times S,$

where S is a compact semi-simple Lie group, including a closed subgroup H of G.

S/H is a compact homogeneous Sasaki manifold, which is a principal fiber bundle over a flag manifold S/Q with fiber $S^1=$

Q/H for some parabolic subgroup Q of S including H.

Sketch of Proof. Since G is a compact Lie group, it is reductive; and its Lie algebra \mathfrak{g} is of the form:

$$\mathfrak{g}=\mathfrak{t}+\mathfrak{s},$$

where t is the center of \mathfrak{g} and \mathfrak{s} a semi-simple Lie algebra with $[\mathfrak{g},\mathfrak{g}] = \mathfrak{s}$. Since the Lee form θ is closed but not 0, we must have $\theta \in \mathfrak{t}^*$. Let ξ be the Lee field with $\theta(\xi) = 1$, and $\eta = J\xi$ (the Reeb field) for the complex structure J with its Maerer-Cartan form ϕ . Then we can express \mathfrak{g} as

$$\mathfrak{g} = <\xi>+\mathfrak{g}', \ \mathfrak{g}'=<\eta>+\mathfrak{k},$$

where $\langle \xi \rangle$ is the 1-dimensional subspace of \mathfrak{g} generated by ξ , $\mathfrak{k} = \ker \phi|_{\mathfrak{g}'}$ with $\mathfrak{k} \supset \mathfrak{h}$, and both of these sums are orthogonal direct sums with respect to the Hermitan metric h.

We can see

• $1 \leq \dim \mathfrak{t} \leq 2$, and ξ, η are infinitesimal automorphisms of J and infinitesimal isometries (Killing fields) with respect to h.

• The case dim $\mathfrak{t} = 2$ can be reduced to the case dim $\mathfrak{t} = 1$.

Let $\mathfrak{q} = \langle \eta \rangle + \mathfrak{h}$, then \mathfrak{q} is a Lie subalgebra of \mathfrak{g}' ; in fact we have $\mathfrak{q} = \{X \in \mathfrak{g}' \mid d\phi(X, \mathfrak{g}') = 0\}$. Then, \mathfrak{h} is an ideal of \mathfrak{q} .

Let S and Q be the corresponding Lie subgroup of G, then Q is a closed subgroup of S since we have $Q = \{x \in S \mid ad(x)^* \phi = \phi\}$; in particular, H is a normal subgroup of Q with $Q/H = S^1$, and η generates an S^1 action on S.

Since $d\phi$ defines a homogeneous symplectic structure on $\mathfrak{k} \mod \mathfrak{h}$, S/Q admits a homogeneous symplectic structure com-

patible with J, defining a Kähler structure on S/Q (due to Borel). We can see that the Lie subalgebra $< \xi > + < \eta >$ of \mathfrak{g} corresponds to a 2-dimensional torus T^2 of G; $\xi - \sqrt{-1}\eta$ defines a 1-dimensional complex torus action on M = G/H on the right which is holomorphic and isometric. We have $M = S^1 \times S/H$, where $S/H \rightarrow S/Q$ is a principal S^1 -bundle over the flag manifold S/Q; and $M \rightarrow S/Q$ is a holomorphic principal fiber bundle over the flag manifold S/Q with fiber $T^1_{\mathbf{C}}$.

Corollary There exist no compact complex homogeneous LCK manifolds; in particular, no compact complex paralellizable manifolds admit their compatible LCK structures.

Proof. Only compact complex Lie groups are complex tori, which can not act transitively on a compact LCK manifold. Q.E.D.

Example. There exists a LCK structure on $\mathfrak{g} = \mathbf{R} \oplus \mathfrak{sl}(2, \mathbf{R})$, which is not of Vaisman type. Take a basis $\{W, X, Y, Z\}$ for \mathfrak{g} with bracket multiplication defined by

$$[X, Y] = -Z, [Z, X] = Y, [Z, Y] = -X,$$

and all other brackets vanish. We have a homogeneous complex structure defined by

$$JY = X, JX = -Y, JW = Z, JZ = -W,$$

and its compatible LCK form Ω on $\mathfrak g$ defined by

$$\Omega = z \wedge w + x \wedge y,$$

with the Lee form $\theta = w$, where x, y, z, w are the Maurer-Cartan forms corresponding to X, Y, Z, W respectively. We can take an-

other LCK form

$$\Omega_{\psi} = \psi \wedge w + d\psi,$$

where $\psi = by + cz \ (b, c \in \mathbf{R})$ with 0 < b < c and $c^2 - b^2 = c$, making the corresponding metric h_{ψ} positive definite. The Lee field ξ is given as

$$\xi = \frac{1}{c^2 - b^2}(cW + bX).$$

It is easy to check that $h([\xi, X], Y) + h(X, [\xi, Y]) \not\equiv 0$; and thus ξ is not a Killing field.

For any lattice Γ of $G = \mathbf{R} \times SL(2, \mathbf{R})$ with the above homogeneous l.c.K. structure, we get a complex surface $\Gamma \setminus G$ (properly elliptic surface) with locally homogeneous non-Vaisman l.c.K. structure.

Generalized Hopf manifolds and their Deformation.

A generalized Hopf manifold is, a compact complex manifold of which the universal covering is $W = \mathbb{C}^n - \{0\}$. We call it here simply a Hopf manifold.

Let M = W/G be a Hopf manifold, where G is the covering transformation group of M consisting of analytic automorhisms over \mathbb{C}^n which fixes the origin 0. G acts on W properly discontinuously and fixed point free. We can express G as

$$G = H \rtimes Z,$$

where Z is an infinite cyclic group generated by a contraction ρ on W, and H is a finite normal subgroup of G. There exists $m \in \mathbb{N}$ such that for $Z' = \langle \rho' \rangle$, $\rho' = \rho^m$, $G' = H \times Z'$ is a normal subgroup of finite index in G. We write G, Z in place of G', Z'.

We can see that W/G is diffeomorphic to $S^1 \times S^{2n-1}/H$, where H is a finite unitary group acting freely on S^{2n-1} . In fact, we can construct a complex analytic family $\{M(t), t \in \mathbf{C}\}$ which deforms W/G to W/l(G), where l(G) is the linear transformation group on W consisting of linear terms of $g \in G$.

Let $T_t, (t \neq 0)$ be an analytic automorphism over W defined by

$$T_t(z_1, z_2, \dots, z_n) = (tz_1, tz_2, \dots, tz_n),$$

and set $g_t = T_t^{-1}gT_t$, $G(t) = \{g_t \mid g \in G'\}$ and G(0) = l(G).

We can see by Cartan's uniqueness theorem that the canonical map $G \to G(0)$ is a group isomorphism, and G(0) acts on W properly discontinously and fixed-point free. It follows that $\{M(t) = W/G(t), t \in \mathbf{C}\}$ defines a complex analytic family. We can further deform a Hopf manifold M = W/G to $W/l_0(G)$ with $l_0(G) = l_0(Z) \times l_0(H)$, where $l_0(Z)$ is generated by a diagonal matrices $d(\alpha_1, \alpha_2, ..., \alpha_n)$ with eigenvalues of $\alpha_1, \alpha_2, ..., \alpha_n$ of the linear term of the generator ρ of Z and $l_0(H) \subset U(n)$.

In fact, we can assume that ρ is of Jordan form $J(\alpha, n)$. Let $T_t, (t \neq 0)$ be an analytic automorphism over W defined by

$$T_t(z_1, z_2, \dots, z_n) = (t^{n-1}z_1, t^{n-2}z_2, \dots, z_n),$$

and set $g_t = T_t^{-1}gT_t$, $G(t) = \{g_t \mid g \in G\}$, which defines a complex analytic family with $G(0) = l_0(G)$.

As a consequence, a Hopf manifold M = W/G has a primary Hopf manifold $\widehat{M} = W/Z$ as a finite normal covering, which can be deformed to a *diagonal Hopf manifold* $\widehat{M}_0 = W/d(\alpha_1, \alpha_2, ..., \alpha_n)$. (cf. K.H., Illinois J. Math. 1993)

Kähler potential and LCK structures

Observation. A LCK structure on M may be defined as a Kähler structure $\tilde{\omega}$ on the universal covering \tilde{M} on which the the fundamental group Γ acts homothetically; that is, for every $\gamma \in \Gamma$, $\gamma^* \tilde{\omega} = \rho(\gamma) \tilde{\omega}$ holds for some positive constant $\rho(\gamma)$.

Let M = G/H be a homogeneous LCK manifold. Then its universal covering $\tilde{M} = \tilde{G}/\tilde{H}_0$ is also a homogeneous LCK manifold. Since the Lee form $\tilde{\theta}$ is exact, $\tilde{\Omega}$ is globally conformal to a Kähler structure $\tilde{\omega}$. The Lie group \tilde{G} acts homothetically on \tilde{M} on the left, and the fundamental group $\Gamma = \tilde{H}/\tilde{H}_0$ acts on \tilde{M} homothetically on the right. Conversely, a Kähler structure $\tilde{\omega}$ on \tilde{M} with homothetic action of \tilde{G} on the left and Γ from the right on \tilde{M} defines a LCK structure on M. **Definition.** Let M be a LCK manifold. Suppose that the universal covering \tilde{M} admits a Kähler potential ϕ , which is a real positive function on \tilde{M} such that $\tilde{\omega} = -\sqrt{-1}\partial\overline{\partial}\phi$ defines a Kähler structure on \tilde{M} . If the fundamental group Γ acts homothetically on ϕ , then we call ϕ a *LCK potential* for M. $\tilde{\omega}$ clearly defines a LCK structure on M.

Example. A diagonal Hopf surfaces $S_{\lambda} = W/\Gamma_{\lambda}$, where Γ_{λ} is generated by a contraction $f : (z_1, z_2) \rightarrow (\lambda z_1, \lambda z_2)$ with $|\lambda| \neq 0, 1$ on W, admits a LCK potential

$$\phi(z_1, z_2) = |z_1|^2 + |z_2|^2.$$

We have a Kähler structure $\tilde{\omega} = -\sqrt{-1} \left(d z_1 \wedge d \overline{z_1} + d z_2 \wedge d \overline{z_2} \right)$ on W for which $\tilde{\omega} = -\sqrt{-1}\partial\overline{\partial}\phi$ holds.

Generalized Hopf manifold and their LCK structures

We know (due to Ornea-Verbitsky) that a small deformation of a compact LCK manifold with potential is also a LCK manifold with potential. In other words, LCK structure with potential is preserved under small deformations.

We have seen that any primary Hopf manifold can be deformed to a diagonal Hopf manifold, which admits a LCK potential. Hence we see that any Hopf manifold admits a LCK structure.