Parabolic isometries of hyperbolic spaces and discreteness

John R Parker Durham University, UK j.r.parker@durham.ac.uk

 290

Shige

It is a great privilege for me to speak at the conference in honour of Shigeyasu Kamiya on the occasion of his retirement.

I have known Shige for many years.

These are pictures of us

- \triangleright At the 2007 conference for Alan Beardon's retirement
- \blacktriangleright In my home in Durham
- \blacktriangleright At the conference Shige organised in Okayama in 1998

KORK EX KEY KEY YOUR

Shimizu's lemma

Lemma (Shimizu 1963) Let T and S be the following matrices in $SL(2, \mathbb{R})$ $\mathcal{T} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \qquad \mathcal{S} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$ Suppose $c \neq 0$. If the group $\Gamma = \langle T, S \rangle$ is discrete then $|ct| \geq 1$.

KOD KAR KED KED E YOUN

Shimizu's lemma

Lemma (Shimizu 1963) Let T and S be the following matrices in $SL(2, \mathbb{R})$ $\mathcal{T} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \qquad \mathcal{S} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$ Suppose $c \neq 0$. If the group $\Gamma = \langle T, S \rangle$ is discrete then $|ct| \geq 1$.

The proof has three steps.

Step 1

Consider the sequence in Γ defined by $S_0=S$ and $S_{j+1}=S_j\, T S_j^{-1}.$

Write $S_j = \begin{pmatrix} a_j & b_j \ 0 & d_j \end{pmatrix}$ c_j d). Then S_{j+1} is given by $\begin{pmatrix} a_j & b_j \end{pmatrix}$ c_j d_j $\left.\begin{pmatrix} 1 & t \ 0 & 1 \end{pmatrix}\begin{pmatrix} d_j & -b_j \ -c_j & a_j \end{pmatrix}$ $=\begin{pmatrix} 1 - a_j c_j t & a_j^2 t \\ 2t & 1 \end{pmatrix}$ $-c_j^2 t$ 1 + a_jc_jt $\big).$

In particular $c_{j+1} = -c_j^2 t$

Proof of Shimizu's lemma continued

Step 2

From the sequence $\{S_i\}$ construct a dynamical system:

 $|c_{j+1}t|=|c_jt|^2$ and so $|c_jt|=|c_0t|^{2^j}=|ct|^{2^j}.$

Find a condition that ensures we lie in a finite basin of attraction: If $|ct|=|c_0t|< 1$ then $\left|c_jt\right|$, and hence c_j , tends to $0.$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Moreover, since $c \neq 0$ then $c_i \neq 0$.

Proof of Shimizu's lemma continued

Step 2

From the sequence $\{S_i\}$ construct a dynamical system:

 $|c_{j+1}t|=|c_jt|^2$ and so $|c_jt|=|c_0t|^{2^j}=|ct|^{2^j}.$ Find a condition that ensures we lie in a finite basin of attraction: If $|ct|=|c_0t|< 1$ then $\left|c_jt\right|$, and hence c_j , tends to $0.$ Moreover, since $c \neq 0$ then $c_i \neq 0$.

Step 3 We use $c_i t \longrightarrow 0$ to show S_i tends to T: We have $a_{i+1} - 1 = -a_i c_i t = -(a_i - 1)c_i t - c_i t$, so for $j \ge 1$: $|a_j - 1| \leq |a_0 - 1| \, |c_0 t|^{2^j} + j |c_0 t|^{2^j}$ Hence a_i tends to 1.

Using our expression for S_{i+1} , this shows S_i tends to T. Since $c_i \neq 0$ then $S_i \neq T$ and $\Gamma = \langle T, S \rangle$ is not discrete.

Hence if Γ is discrete, we must have $|ct| > 1$. \Box

Some hyperbolic geometry

- A matrix S in $SL(2,\mathbb{R})$ acts on the upper half plane as a Möbius transformation $S(z)$ in $PSL(2,\mathbb{R})$ $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ corresponds to $S(z) = \frac{az+b}{cz+d}$.
- \blacktriangleright $S(z)$ is an isometry of the hyperbolic plane $\mathsf{H}^2=\mathsf{H}^2_\mathbb{R}$
- \triangleright A discrete subgroup Γ of $SL(2,\mathbb{R})$ acts properly discontinuously on $\mathbf{H}_{\mathbb{R}}^2$.
- \blacktriangleright The quotient $M = \mathsf{H}_{\mathbb{R}}^2/\Gamma$ is an orbifold.
- \blacktriangleright The matrix T corresponds to the Möbius transformation $T(z) = z + t$. This has (Euclidean) translation length $\ell_T = |t|$
- ► For $u > 0$ the horoball H_u of height u at ∞ is $H_u = \{ z = x + iy \in \mathbf{H}_{\mathbb{R}}^2 : y > u \}$
- A horoball at a point $x \in \mathbb{R}$ is an open disc tangent to $\mathbb R$ at x

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Isometric spheres

Let $S(z) = (az + b)/(cz + d) \in \text{PSL}(2, \mathbb{R})$ not fixing ∞ So $c \neq 0$. The isometric sphere $I(S)$ of S is the Euclidean semi-circle with centre $S^{-1}(\infty)=-d/c$ and radius $r_{\mathsf{s}}=1/|c|$

KORK EX KEY KEY YOUR

S sends the outside of $I(S)$ to the inside of $I(S^{-1})$.

Isometric spheres

Let $S(z) = (az + b)/(cz + d) \in \text{PSL}(2, \mathbb{R})$ not fixing ∞ So $c \neq 0$. The isometric sphere $I(S)$ of S is the Euclidean semi-circle with centre $S^{-1}(\infty)=-d/c$ and radius $r_{\mathsf{s}}=1/|c|$

to a horoball $S(H_u)$ of diameter $1/u|c|^2$ at $S(\infty).$

So if $u \ge r_s = 1/|c|$ then H_u and $S(H_u)$ are disjoint.

Geometric interpretation of Shimizu's lemma

Let Γ be a discrete subgroup of $PSL(2,\mathbb{R})$ containing $T(z) = z + t$ where $t > 0$.

(1) If S is any element of Γ not fixing ∞ then the radius r_S of the isometric sphere of S satisfies $r_S \leq \ell_{\mathcal{T}}$ (Note this is an inequality between two Euclidean quantities) Proof: $r_s = 1/|c|$, $\ell_{\mathcal{T}} = |t|$ and Shimizu says $|ct| \geq 1$.

(2) Horoball H_t of height $u = t$ is precisely invariant under Γ That is, for any $S \in \Gamma$ either $S(H_t) = H_t$ or $S(H_t) \cap H_t = \emptyset$.

On the orbifold $M = \mathsf{H}^2_{\mathbb{R}}/\Gamma$ $C = H_t/\Gamma_\infty$ is a cusp neighbourhood of hyperbolic area 1.

The modular group

Shimizu's lemma is sharp for the modular group $PSL(2, \mathbb{Z})$ In this case, $t = 1$ and $S(z) = -1/z$ has $r_S = 1$. There is a cusp neighbourhood C which cannot be enlarged. It has area is 1, which is large compared to the area of $\mathsf{H}^2_\mathbb{R}/\mathrm{PSL}(2,\mathbb{Z})$, which is $\pi/3$ −1 0 1 2 C

KOD KAR KED KED E YOUN

Generalisations of Shimizu's lemma

- Eutbecher 1967 Subgroups of $\mathrm{PSL}(2,\mathbb{C})=\mathrm{Isom}_0(\mathsf{H}_{\mathbb{R}}^3)$ containing a translation.
- \blacktriangleright Wielenberg 1977 Subgroups of $\text{PO}_0(n,1) = \text{Isom}_0(\mathbf{H}_{\mathbb{R}}^n)$ containing a translation.
- \blacktriangleright Kamiya 1983 Subgroups of $PU(n, 1) = \text{Isom}_0(\mathsf{H}_{\mathbb{C}}^n)$ or $\mathrm{PSp}(n,1) = \mathrm{Isom}_0(\mathsf{H}^n_{\mathbb{H}})$ containing a vertical Heisenberg translation.
- Apanasov 1985, Ohtake 1985 Subgroups of $\mathrm{Isom}(\mathsf{H}_{\mathbb{R}}^n)$ with $n \geq 4$ containing a screw parabolic map: there is no uniform bound on radii of isometric spheres.
- \blacktriangleright JRP 1992 Subgroups of $PU(n, 1)$ containing a non-vertical Heisenberg translation: there is no uniform bound on radii of isometric spheres.
- ► Waterman 1993 Subgroups of $\mathrm{Isom}(\mathbf{H}_{\mathbb{R}}^n)$ with $n \geq 4$ containing a screw parabolic map: radii of isometric spheres bounded in terms of parabolic translati[on](#page-10-0)l[en](#page-12-0)[g](#page-10-0)[th](#page-11-0) [at](#page-0-0) [ce](#page-39-0)[nt](#page-0-0)[res](#page-39-0)[.](#page-0-0)

Jørgensen's inequality

Jørgensen 1976 If $\langle T, S \rangle$ subgroup of $SL(2, \mathbb{C})$ discrete, then elementary or $|\mathrm{tr}^2(\mathcal{S})-4|+|\mathrm{tr}[\mathcal{S},\,\mathcal{T}]-2|\geq 1$ (Same structure of proof as Shimizu's lemma).

KORK EX KEY KEY YOUR

Jørgensen's inequality

Jørgensen 1976 If $\langle T, S \rangle$ subgroup of $SL(2, \mathbb{C})$ discrete, then elementary or $|\mathrm{tr}^2(\mathcal{S})-4|+|\mathrm{tr}[\mathcal{S},\,\mathcal{T}]-2|\geq 1$ (Same structure of proof as Shimizu's lemma).

While working on basin of attraction part of this problem Brooks & Matelski 1978/1979 produced

KAD KED KED E DAG

Possibly the first picture of the Mandelbrot [set](#page-12-0)

Shimizu's lemma for real hyperbolic space

A parabolic isometry $\mathcal T$ of $\mathsf H^n_\mathbb R$ fixing ∞ acts on $\mathbb R^{n-1}$ as $T(x) = Ux + t$ where $U \in O(n-1)$, $t \in \mathbb{R}^{n-1}$ and $Ut = t$.

Let $N_U = \max\{|| (U - I)x|| : ||x|| = 1\}$ The Euclidean translation length of T at x is $\ell_{\mathcal{T}}(x) = \| \mathcal{T}(x) - x \| = \| (U - I)x + t \| = \sqrt{\| (U - I)x \|^2 + \| t \|^2}$

KORK EX KEY KEY YOUR

Shimizu's lemma for real hyperbolic space

A parabolic isometry $\mathcal T$ of $\mathsf H^n_\mathbb R$ fixing ∞ acts on $\mathbb R^{n-1}$ as $T(x) = Ux + t$ where $U \in O(n-1)$, $t \in \mathbb{R}^{n-1}$ and $Ut = t$.

Let $N_U = \max\{|| (U - I)x || : ||x|| = 1\}$ The Euclidean translation length of T at x is $\ell_{\mathcal{T}}(x) = \| \mathcal{T}(x) - x \| = \| (U - I)x + t \| = \sqrt{\| (U - I)x \|^2 + \| t \|^2}$

Theorem (Waterman 1993) Let $\Gamma < \text{Isom}(\mathbf{H}_{\mathbb{R}}^n)$ be discrete and contain $T(x) = Ux + t$. Suppose $N_U < 1/4$ and write $K = \frac{1}{2}$ $\frac{1}{2}(1+\sqrt{1-4N_U}).$ Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_{\mathcal{T}}(S^{-1}(\infty))\ell_{\mathcal{T}}(S(\infty))}{\kappa^2}$ $\frac{K^2}{K^2}$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Shimizu's lemma for real hyperbolic space

A parabolic isometry $\mathcal T$ of $\mathsf H^n_\mathbb R$ fixing ∞ acts on $\mathbb R^{n-1}$ as $T(x) = Ux + t$ where $U \in O(n-1)$, $t \in \mathbb{R}^{n-1}$ and $Ut = t$.

Let $N_U = \max\{|| (U - I)x || : ||x|| = 1\}$ The Euclidean translation length of T at x is $\ell_{\mathcal{T}}(x) = \| \mathcal{T}(x) - x \| = \| (U - I)x + t \| = \sqrt{\| (U - I)x \|^2 + \| t \|^2}$

Theorem (Waterman 1993) Let $\Gamma < \text{Isom}(\mathbf{H}_{\mathbb{R}}^n)$ be discrete and contain $T(x) = Ux + t$. Suppose $N_U < 1/4$ and write $K = \frac{1}{2}$ $\frac{1}{2}(1+\sqrt{1-4N_U}).$ Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_{\mathcal{T}}(S^{-1}(\infty))\ell_{\mathcal{T}}(S(\infty))}{\kappa^2}$ $\frac{K^2}{K^2}$.

If $U = I$ then $N_U = 0$ and $K = 1$. Also, $\ell_{\mathcal{T}}(x) = ||t||$ and Waterman gives $r_S \le ||t||$ This is Wielenberg's version of Shimizu's lemma.

We want to generalise this to other hyperbo[lic](#page-15-0) [sp](#page-17-0)[a](#page-13-0)[c](#page-14-0)[e](#page-16-0)[s](#page-17-0)
All the second service is a service on the second service is the second service in the service of the servic

Hyperbolic spaces

Let F be one of

- \blacktriangleright the real numbers \mathbb{R} .
- \blacktriangleright the complex numbers \mathbb{C} ,
- \blacktriangleright the quaternions $\mathbb H$

Let $\mathbb{F}^{n,1}$ be the $n+1$ dimensional $\mathbb{F}\text{-vector space}$ (with scalars in $\mathbb F$ acting on the right) equipped with $\langle \cdot, \cdot \rangle$ Hermitian form (bilinear for $\mathbb{R}^{n,1}$) of signature $(n,1)$ Let $V_-=\{\mathbf{z}\in\mathbb{F}^{n,1} \;:\; \langle \mathbf{z},\mathbf{z}\rangle < 0\}$ and $V_0 = \{ \mathbf{z} \in \mathbb{F}^{n,1} - \{\mathbf{0}\} \; : \; \langle \mathbf{z}, \mathbf{z} \rangle = 0 \}$ Let $\mathbb{P}:\mathbb{F}^{n,1}-\{\mathbf{0}\}\longrightarrow \mathbb{F}\mathbb{P}^n$ be the (right) projection map.

Then $\mathbf{H}_{\mathbb{F}}^n = \mathbb{P} V_+$ and $\partial \mathbf{H}_{\mathbb{F}}^n = \mathbb{P} V_0$; metric on $\mathbf{H}_{\mathbb{F}}^n$ is given by: $ds^2 = \frac{-4}{\sqrt{2}}$ $\frac{-4}{\langle z, z \rangle^2} \text{det} \begin{pmatrix} \langle z, z \rangle & \langle dz, z \rangle \ \langle z, dz \rangle & \langle dz, dz \end{pmatrix}$ $\langle z, dz \rangle$ $\langle dz, dz \rangle$ \setminus

The hyperbolic spaces are $\mathsf{H}^n_\mathbb{R}$, $\mathsf{H}^n_\mathbb{C}$, $\mathsf{H}^n_\mathbb{H}$ together with $\mathsf{H}^2_\mathbb{O}$ where $\mathbb O$ are the octonions (see Chen & Greenberg 1974).

More about hyperbolic spaces

Let $O(n, 1)$, $U(n, 1)$, $Sp(n, 1)$ be the group preserving $\langle \cdot, \cdot \rangle$ when $\mathbb{F}=\mathbb{R},\,\mathbb{C},\,\mathbb{H}$ respectively (acting on $\mathbb{F}^{n,1}$ on the left). This group acts (projectively) by isometries on $\mathsf{H}^n_\mathbb{F}$ (For $\mathbb{F} = \mathbb{O}$ there is no vector space $\mathbb{O}^{2,1}$ but there is an analogous isometry group $\mathsf{F}_{4(-20)}$ of $\mathsf{H}^2_\mathbb{O}$. We will not consider this case here.) We pass between matrix groups and isometries without comment.

An isometry S of a hyperbolic space H is

- \triangleright loxodromic (or hyperbolic) if it has two fixed points, both on ∂H
- **► parabolic if it has a unique fixed point, lying on** ∂ **H**
- \triangleright elliptic if it fixes (at least) one point of H

There are finer classifications of these types. We will mainly be interested in parabolic maps, which are: Either (Heisenberg)-translations or screw parabolic maps.

Shimizu's lemma for other hyperbolic spaces

- \blacktriangleright Kamiya 1983 Subgroups of $SU(n, 1)$ or $Sp(n, 1)$ containing a vertical Heisenberg translation.
- \blacktriangleright Hersonsky-Paulin 1996 Subgroups of $SU(n, 1)$ containing a non-vertical Heisenberg translation (not given geometrically).
- \blacktriangleright JRP 1997 Subgroups of $SU(n,1)$ containing a non-vertical Heisenberg translation.
- I. Kim & JRP 2003 Subgroups of $Sp(n, 1)$ containing a non-vertical Heisenberg translation.
- If Jiang & JRP 2003 Subgroups of $SU(2, 1)$ containing a screw parabolic map (not given geometrically).
- \triangleright D. Kim 2004 Subgroups of $Sp(2, 1)$ containing (certain types of) screw parabolic maps (not given geometrically).
- \blacktriangleright Kamiya & JRP 2008 Subgroups of $SU(2,1)$ containing a positively oriented screw parabolic map.
- \triangleright Cao & JRP 2014 Subgroups of $SU(n, 1)$ or $Sp(n, 1)$ containing any parabolic map.KID KA KERKER KID KO

Other generalisations

The stable basin theorem

- \triangleright Basmajian & Miner 1998 Stable basin theorem stronger hypothesis than Shimizu/Jørgensen. Includes version of Shimizu's lemma for $SU(2,1)$
- ► Kamiya 2000, Kamiya & JRP 2002 SBT for Heisenberg translations follows from Shimizu's lemma.

Generalisations of Jørgensen's inequality:

- \triangleright Jiang, Kamiya & JRP 2003 Jørgensen's inequality for subgroups of $SU(2,1)$
- \triangleright Markham 2003 Jørgensen's inequality for subgroups of $PSp(2, 1)$ and (some) subgroups of $F_{4(-20)}$
- \triangleright D. Kim 2004 Jørgensen's inequality for subgroups of $PSp(2, 1)$
- \triangleright Cao & JRP 2011 Jørgensen's inequality for subgroups of $\text{SU}(n,1)$ or $\text{Sp}(n,1)$.

Heisenberg groups and the boundary of hyperbolic spaces

We can identify

- \blacktriangleright $\partial \mathsf{H}_{\mathbb{R}}^n$ with $\mathbb{R}^{n-1} \cup \{\infty\},$
- ► $\partial H_{\mathbb{C}}^n$ with $\mathfrak{N}_{2n-1} \cup \{\infty\},\$
- \blacktriangleright $\partial H_{\mathbb{H}}^n$ with $\mathfrak{N}_{4n-1} \cup \{\infty\}.$

 ${\mathfrak N}_{2n-1}={\mathbb C}^{n-1}\times {\mathbb R}$ is the $(2n-1)$ -dimensional Heisenberg group, and $\mathfrak{N}_{4n-1}=\mathbb{H}^{n-1}\times\mathbb{R}^3=\mathbb{H}^{n-1}\times \Im\mathbb{H}$ is the $(4n - 1)$ -dimensional generalised Heisenberg group both with the group law $(\zeta_1, v_1) \cdot (\zeta_2, v_2) = (\zeta_1 + \zeta_2, v_1 + v_2 + 2\Im(\zeta_2^*\zeta_1))$ (where z^* is the conjugate transpose) We will write $\mathfrak N$ for both cases

The Cygan metric on $\mathfrak N$ is the metric associated to the norm $\|(\zeta, v)\| = (\|\zeta\|^4 + |v|^2)^{1/4}$ It generalises the Euclidean metric on \mathbb{R}^{n-1} for $\mathsf{H}_{\mathbb{R}}^n$ and the square root of the Euclidean metric on $\mathbb R$ for $\mathsf{\dot{H}^1_C} \approx \mathsf{H}^2_\mathbb R$.

Action of $PU(n, 1)$ and $PSp(n, 1)$ on $\mathfrak N$

We write an element S of $PU(n, 1)$ or $PSp(n, 1)$ and its inverse as

$$
S = \begin{pmatrix} a & \gamma^* & b \\ \alpha & A & \beta \\ c & \delta^* & d \end{pmatrix}, \quad S^{-1} = \begin{pmatrix} \overline{d} & \beta^* & \overline{b} \\ \delta & A^* & \gamma \\ \overline{c} & \alpha^* & \overline{a} \end{pmatrix}
$$

where $a, b, c, d \in \mathbb{F}$, $\alpha, \beta, \gamma, \delta \in \mathbb{F}^{n-1}$, $A \in U(n-1)$ or $\text{Sp}(n-1)$. If $c = 0$ then S fixes ∞ ; if $c \neq 0$ we define isometric spheres.

The isometric sphere $I(S)$ of S is the Cygan sphere of radius $r_{\mathcal{S}}=1/|c|^{1/2}$ with centre $S^{-1}(\infty)=\left(\delta\overline{c}^{-1}/\sqrt{2}, \Im(\overline{d}\overline{c}^{-1})\right)\in \mathfrak{N}.$ S sends the outside of $I(S)$ to the inside of $I(S^{-1})$.

Pictures of Cygan spheres and hemispheres [by](#page-21-0) [An](#page-23-0)[t](#page-21-0)[on](#page-22-0) [Lu](#page-0-0)[ky](#page-39-0)[an](#page-0-0)[en](#page-39-0)[ko](#page-0-0)[.](#page-39-0)

Heisenberg translations in $PU(n, 1)$ and $PSp(n, 1)$

The simplest parabolic maps in $PU(n, 1)$ and $PSp(n, 1)$ are Heisenberg translations:

The (generalised) Heisenberg group $\mathfrak N$ acts on itself by left translation: $\mathcal{T}_{(\tau,t)}: (\zeta, \nu) \longmapsto \bigl(\zeta + \tau, \nu + t + 2 \Im(\zeta^*\tau)\bigr)$

As a matrix in PU(n, 1) or
$$
\text{PSp}(n, 1)
$$
 it is
\n
$$
T_{(\tau,t)} = T = \begin{pmatrix} 1 & -\sqrt{2}\tau^* & -\|\tau\|^2 + t \\ 0 & 1 & \sqrt{2}\tau \\ 0 & 0 & 1 \end{pmatrix}.
$$
\nNote: *t* in top right hand entry is pure imaginary so is *it* in complex case.

A Heisenberg translation by $(0, t)$ is called a vertical translation and lies in the centre of \mathfrak{N} .

The Cygan translation length of T at $(\zeta, v) \in \mathfrak{N}$ is $\ell_{\mathcal{T}}((\zeta, v)) = (\|\tau\|^4 + |t + 4\Im(\zeta^*\tau)|^2)^{1/4}.$

Theorem (JRP 1997, Kim-JRP 2003) Let Γ < PU(n, 1) or PSp(n, 1) be discrete and contain Heisenberg translation T by (τ, t) . Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_\mathcal{T}(S^{-1}(\infty))\ell_\mathcal{T}(S(\infty)) + 4||\tau||^2$.

 \blacktriangleright When $\tau = 0$ then $\ell_{\mathcal{T}}((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \leq \ell_{\mathcal{T}}^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

KORKAR KERKER SAGA

Theorem (JRP 1997, Kim-JRP 2003)

Let Γ < PU(n, 1) or PSp(n, 1) be discrete and contain Heisenberg translation \overline{T} by (τ, t) .

Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_\mathcal{T}(S^{-1}(\infty))\ell_\mathcal{T}(S(\infty)) + 4||\tau||^2$.

 \blacktriangleright When $\tau = 0$ then $\ell_{\mathcal{T}}((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \leq \ell_{\mathcal{T}}^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Structure of proof same as for classical Shimizu:

- ► Consider the sequence $S_0 = S$, $S_{j+1} = S_j \, T S_j^{-1}$
- \triangleright Show in finite basin of attraction of dynamical system

KORKAR KERKER SAGA

 \blacktriangleright Deduce S_i tends to T.

Theorem (JRP 1997, Kim-JRP 2003)

Let Γ < PU(n, 1) or PSp(n, 1) be discrete and contain Heisenberg translation \overline{T} by (τ, t) .

Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_\mathcal{T}(S^{-1}(\infty))\ell_\mathcal{T}(S(\infty)) + 4||\tau||^2$.

 \blacktriangleright When $\tau = 0$ then $\ell_{\mathcal{T}}((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \leq \ell_{\mathcal{T}}^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Structure of proof same as for classical Shimizu:

- ► Consider the sequence $S_0 = S$, $S_{j+1} = S_j \, T S_j^{-1}$
- \triangleright Show in finite basin of attraction of dynamical system
- \blacktriangleright Deduce S_i tends to T.

The variables in the dynamical system are:

 $\mathcal{X}_j = \big(\textsf{max}\{\ell_{\mathcal{T}} (\mathcal{S}_i^{-1}$ $\left\langle j^{-1}(\infty)\right\rangle$, $\ell_{\mathcal{T}}(S_j(\infty))\}/r_{S_j}\big)^2$, $Y_j = \left(\|\tau\|/r_{S_j}\right)^2$ They satisfy $X_{j+1} \leq X_j^2 + 4Y_j$, $Y_{j+1} \leq X_j Y_j$

Theorem (JRP 1997, Kim-JRP 2003)

Let Γ < PU(n, 1) or PSp(n, 1) be discrete and contain Heisenberg translation T by (τ, t) .

Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_\mathcal{T}(S^{-1}(\infty))\ell_\mathcal{T}(S(\infty)) + 4||\tau||^2$.

 \blacktriangleright When $\tau = 0$ then $\ell_{\mathcal{T}}((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \leq \ell_{\mathcal{T}}^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Structure of proof same as for classical Shimizu:

- ► Consider the sequence $S_0 = S$, $S_{j+1} = S_j \, T S_j^{-1}$
- \triangleright Show in finite basin of attraction of dynamical system
- \blacktriangleright Deduce S_i tends to T.

The variables in the dynamical system are:

 $\left\langle j^{-1}(\infty)\right\rangle$, $\ell_{\mathcal{T}}(S_j(\infty))\}/r_{S_j}\big)^2$, $Y_j = \left(\|\tau\|/r_{S_j}\right)^2$ $\mathcal{X}_j = \big(\textsf{max}\{\ell_{\mathcal{T}} (\mathcal{S}_i^{-1}$ They satisfy $X_{j+1} \leq X_j^2 + 4Y_j$, $Y_{j+1} \leq X_j Y_j$ If bound on r_S is not true then we show $X_i + 4Y_i < 1$ and X_j , Y_j tend to 0 as $j \to \infty$ YO K (FEX KE) YOUR

Invariant horoballs

We can give $\mathsf{H}^n_\mathbb{F}$ the structure $\mathfrak{N}\times\mathbb{R}_+$ A horoball H_u of height u at ∞ is $\mathfrak{N} \times (u, \infty)$.

- \blacktriangleright For vertical translations by $(0, t)$ the horoball $H_{|t|}$ is precisely invariant.
- For non-vertical translations by (τ, t) with $\tau \neq 0$ there is a precisely invariant sub-horospherical region. We will not go into details about these.
- \blacktriangleright There is a sharp version of Shimizu's lemma for $PU(2,1)$ yielding a cusp neighbourhood of volume 1/4 This cusp neighbourhood is as maximal for the Eisenstein-Picard lattice $PU(2, 1; \mathbb{Z}[\frac{1+i\sqrt{3}}{2}])$ $\frac{71/3}{2}$) and its sister – which have covolume $\pi^2/27$

KORKAR KERKER SAGA

Positively oriented screw parabolic maps in $PU(2, 1)$ Consider $T=$ $\sqrt{ }$ \mathcal{L} 1 0 it $0 e^{i\theta} 0$ 0 0 1 \setminus $\Big\} \in \text{PU}(2,1)$ T is positively oriented if $t \sin(\theta) > 0$. T acts on \mathfrak{N}_3 as $T : (\zeta, v) \longmapsto (e^{i\theta} \zeta, v + t)$ Its Cygan translation length $\ell_{\mathcal{T}}((\zeta, v))$ at (ζ, v) is: $|2|\zeta|^2(e^{i\theta}-1)+it|^{1/2} = (|\zeta|^4|e^{i\theta}-1|^4+(2|\zeta|^2\sin(\theta)+t)^2)^{1/4}$

We have the following version of Shimizu's lemma for groups with positively oriented screw parabolic maps (cf Waterman's theorem):

Theorem (Kamiya-JRP 2008)

Let $\Gamma < PU(2, 1)$ be discrete and contain positively oriented T. Suppose $|e^{i\theta}-1|< 1/4$ and write $K=\frac{1}{2}$ $\frac{1}{2}(1+\sqrt{1-4|e^{i\theta}-1|}).$ Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_{\mathcal{T}}(S^{-1}(\infty))\ell_{\mathcal{T}}(S(\infty))}{\kappa^2}$ $\frac{K^2}{K^2}$.

In Note that if $\theta = 0$ we obtain Kamiya's [19](#page-28-0)[83](#page-30-0) [r](#page-28-0)[es](#page-29-0)[u](#page-30-0)[lt.](#page-0-0)

General parabolic maps in $PU(n, 1)$

- A general parabolic map in $PU(n, 1)$ has the form $\tau =$ $\sqrt{ }$ \mathcal{L} 1 $-\sqrt{2}\tau^*$ - $||\tau||^2 + it$ 0 U √ 2τ 0 0 1 \setminus $\overline{1}$ where $U \in U(n-1)$ with $U\tau = \tau$ (so if $n = 2$ and $U \neq I$ then $\tau = 0$).
- If $U \neq I$ then this is a screw parabolic map.
- \blacktriangleright T acts on \mathfrak{N}_{2n-1} as $\mathcal{T}: (\zeta, v) \longmapsto (U\zeta + \tau, v + t + 2\Im(\zeta^*\tau))$
- Its Cygan translation length at (ζ, v) is $\ell_{\mathcal{T}}((\zeta, v)) = \left(\|(U-I)\zeta + \tau\|^4 + |t+2\Im((\zeta^*-\tau^*)(U\zeta + \tau))|^2 \right)^{1/4}.$
- If $U = I$ then this map is a Heisenberg translation. Action on \mathfrak{N}_{2n-1} and Cygan translation length are as before.

General parabolic maps in $PSp(n, 1)$

Cao-JRP 2014 A general parabolic map in $\mathrm{PSp}(n,1)$ has the form $\tau =$ $\sqrt{ }$ \mathcal{L} μ $-\sqrt{2}\tau^*\mu$ $(-\|\tau\|^2+t)\mu$ 0 U √ 2 $\tau\mu$ 0 0 μ \setminus $\overline{1}$ where $U \in \mathrm{Sp}(n-1)$ and $\mu \in \mathbb{H}$, $|\mu|=1$ with $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $U\tau = \mu\tau$, $U^*\tau = \overline{\mu}\tau$, $\mu\tau \neq \tau\overline{\mu}$ if $\tau \neq 0$ and $\mu \neq \pm 1$, $U\tau = \tau$, $U^*\tau = \tau$ if $\tau \neq 0$ and $\mu = \pm 1$, $\mu t \neq t\overline{\mu}$ if $\tau = 0$ and $\mu \neq \pm 1,$ $t \neq 0$ if $\tau = 0$ and $\mu = \pm 1$.

This acts on \mathfrak{N}_{4n-1} as $T : (\zeta, v) \longmapsto (U(\overline{\mu} + \tau, \mu v \overline{\mu} + t + 2\Im(\mu \zeta^* \overline{\mu} \tau))$ Its Cygan translation length $\ell_{\mathcal{T}} ((\zeta, v))$ is $\left(\|U\zeta\overline{\mu}-\zeta+\tau\|^4+|\mu\nu\overline{\mu}-\nu+t+2\Im((\zeta^*-\tau^*)(U\zeta\overline{\mu}+\tau))|^2\right)^{1/4}$

Vertical projection

Before discussing the generalised Shimizu's lemma, there is one more ingredient.

- \blacktriangleright Define vertical projection $\Pi: \mathfrak{N}_{2n-1} = \mathbb{C}^{n-1} \times \mathbb{R} \longrightarrow \mathbb{C}^{n-1}$ $\Pi: \mathfrak{N}_{4n-1} = \mathbb{H}^{n-1} \times \mathbb{R}^3 \longrightarrow \mathbb{H}^{n-1}$ by $\Pi : (\zeta, v) \longmapsto \zeta$.
- If \top is one of the parabolic maps defined above, its vertical projection acts on \mathbb{C}^{n-1} or \mathbb{H}^{n-1} respectively as T_{Π} : $\zeta \mapsto U\zeta\overline{\mu} + \tau$ (where $\mu = 1$ in the complex case)
- \triangleright The Euclidean translation length of the vertical projection of T at $\zeta \in \mathbb{F}^{n-1}$ is $\ell_T^{\Pi}(\zeta) = ||U\zeta\overline{\mu} - \zeta + \tau||$

KORK EX KEY KEY YOUR

The generalised Shimizu's lemma

Let T be a general parabolic map, U , μ as before. Define $N_{U,u} = \max\{||U\zeta\overline{\mu} - \zeta|| : ||\zeta|| = 1\}$ $N_\mu = \max\{\|\mu\zeta\overline{\mu} - \zeta\| \ : \ \|\zeta\| = 1\} = |\Im(\mu)|$

KORK EX KEY KEY YOUR

The generalised Shimizu's lemma

Let T be a general parabolic map, U , μ as before. Define $N_{U,\mu} = \max\{||U\zeta\overline{\mu} - \zeta|| : ||\zeta|| = 1\}$ $N_{\mu} = \max\{\|\mu\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\} = |\Im(\mu)|$ Theorem (Cao-JRP 2014) Let $\Gamma \in \mathrm{PSp}(n,1)$ be discrete and contain parabolic T as above. Suppose $N_\mu < 1/4$ and $N_{U,\mu} < (3-2\sqrt{2+N_\mu})/2$ Define $K=\frac{1}{2}$ $\frac{1}{2} \Big(1 + 2 {\cal N}_{U,\mu} + \sqrt{1 - 12 {\cal N}_{U,\mu} + 4 {\cal N}_{U,\mu}^2 - 4 {\cal N}_{\mu}} \Big)$ Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius rs. Then $r_{\mathcal{S}}^2 \leq \frac{\ell_{\mathcal{T}}(S^{-1}(\infty))\ell_{\mathcal{T}}(S(\infty))}{\kappa}$ $\frac{d\ell_{\mathcal{T}}^{0}(\mathsf{N}(\infty))}{d\mathcal{K}} + \frac{4\ell_{\mathcal{T}}^{0}(\mathsf{N}\mathsf{S}^{-1}(\infty))\ell_{\mathcal{T}}^{0}(\mathsf{N}\mathsf{S}(\infty))}{\mathcal{K}(\mathcal{K}-2N_{U,\mu})}$ $\mathcal{K}(K-2N_{U,\mu})$

The generalised Shimizu's lemma

Let T be a general parabolic map, U , μ as before. Define $N_{U,\mu} = \max\{||U\zeta\overline{\mu} - \zeta|| : ||\zeta|| = 1\}$ $N_{\mu} = \max\{\|\mu\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\} = |\Im(\mu)|$ Theorem (Cao-JRP 2014) Let $\Gamma \in \mathrm{PSp}(n,1)$ be discrete and contain parabolic T as above. Suppose $N_\mu < 1/4$ and $N_{U,\mu} < (3-2\sqrt{2+N_\mu})/2$ Define $K=\frac{1}{2}$ $\frac{1}{2} \Big(1 + 2 {\cal N}_{U,\mu} + \sqrt{1 - 12 {\cal N}_{U,\mu} + 4 {\cal N}_{U,\mu}^2 - 4 {\cal N}_{\mu}} \Big)$ Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius rs. Then $r_{\mathcal{S}}^2 \leq \frac{\ell_{\mathcal{T}}(S^{-1}(\infty))\ell_{\mathcal{T}}(S(\infty))}{\kappa}$ $\frac{d\ell_{\mathcal{T}}^{0}(\mathsf{N}(\infty))}{d\mathcal{K}} + \frac{4\ell_{\mathcal{T}}^{0}(\mathsf{N}\mathsf{S}^{-1}(\infty))\ell_{\mathcal{T}}^{0}(\mathsf{N}\mathsf{S}(\infty))}{\mathcal{K}(\mathcal{K}-2N_{U,\mu})}$ $\mathcal{K}(K-2N_{U,\mu})$

- ► When $\mu = 1$ (including case of $PU(n, 1)$) hypotheses simplify: $N_U = N_{U,1} < (\sqrt{2}-1)^2/2$ and $K=\frac{1}{2}$ $\frac{1}{2} \Big(1 + 2 N_U + \sqrt{1 - 12 N_U + 4 N_U^2} \Big)$ The conclusion remains the same.
- \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright When $U = I$, $\mu = 1$ get version for Hei[sen](#page-34-0)[be](#page-36-0)rg [tr](#page-36-0)[an](#page-0-0)[sla](#page-39-0)[tio](#page-0-0)[ns](#page-39-0)[.](#page-0-0)

 Ω

Sketch of the proof when $U \neq I$ (so $N_{U,\mu} \neq 0$)

- ► Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- \triangleright Show in finite basin of attraction of dynamical system

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Deduce S_i tends to T.

Sketch of the proof when $U \neq I$ (so $N_{U,\mu} \neq 0$)

- ► Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- \triangleright Show in finite basin of attraction of dynamical system
- \blacktriangleright Deduce S_i tends to T.

The variables in the dynamical system are:

 $\mathcal{X}_j = \big({\sf max}\{\ell_{\mathcal{T}}(\mathcal{S}_i^{-1}$ $\ell_{\mathcal{T}}^{-1}(\infty)$), $\ell_{\mathcal{T}}(S_j(\infty))\}/r_{S_j})^2$, $Y_j = \left(\max\{\ell_T^{\Pi}(\Pi S_j^{-1})\right)$ $j^{-1}(\infty)), \ell^{\Pi}_{\mathcal{T}}(\Pi \mathcal{S}_{j}(\infty))\}/\mathsf{r}_{\mathcal{S}_{j}}\big)^{2}$ They satisfy recursion inequalities: $X_{j+1} \leq X_j^2 + 4Y_j + 2N_{U,\mu} + N_{\mu}, \quad Y_{j+1} \leq X_jY_j + 2N_{U,\mu}Y_j + N_{U,\mu}^2$

KORK EX KEY KEY YOUR

Sketch of the proof when $U \neq I$ (so $N_{U,\mu} \neq 0$)

- ► Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- \triangleright Show in finite basin of attraction of dynamical system
- \blacktriangleright Deduce S_i tends to T.

The variables in the dynamical system are:

 $\mathcal{X}_j = \big({\sf max}\{\ell_{\mathcal{T}}(\mathcal{S}_i^{-1}$ $\ell_{\mathcal{T}}^{-1}(\infty)$), $\ell_{\mathcal{T}}(S_j(\infty))\}/r_{S_j})^2$, $Y_j = \left(\max\{\ell_T^{\Pi}(\Pi S_j^{-1})\right)$ $j^{-1}(\infty)), \ell^{\Pi}_{\mathcal{T}}(\Pi \mathcal{S}_{j}(\infty))\}/\mathsf{r}_{\mathcal{S}_{j}}\big)^{2}$ They satisfy recursion inequalities: $X_{j+1} \leq X_j^2 + 4Y_j + 2N_{U,\mu} + N_{\mu}, \quad Y_{j+1} \leq X_jY_j + 2N_{U,\mu}Y_j + N_{U,\mu}^2$

KO K K (FIK K EK GRA

If the bound on r_S in the theorem is not true then:

- \blacktriangleright X_i + 4Y_i/(K 2N_{U,u}) < K
- \triangleright for large enough *j* we have $X_i < K - 2N_{U,u}$ and $Y_i < (K - 2N_{U,u})N_{U,u}/2$
- In for all $\varepsilon > 0$ there exists J_{ε} so for all $j > J_{\varepsilon}$: $X_i < 1 - K + \varepsilon$ and $Y_i < (1 - K)N_{U,u}/2 + \varepsilon$

Where do we go from here?

- \triangleright For screw parabolic maps T where U has infinite order, the asymptotic growth (in terms of distance from axis) of bounds on r_S are worse than in examples.
- **Filandsson & Zakeri:** In $PO(4, 1)$ use same bounds for carefully chosen powers of T to improve asymptotics. 'Carefully chosen' means use Diophantine approximation of rotation angle.

KORKAR KERKER SAGA

- Erlandsson-Zakeri's idea also works in $PU(2, 1)$.
- **►** Try to generalise these results to $F_{4(-20)}$