Parabolic isometries of hyperbolic spaces and discreteness

John R Parker Durham University, UK j.r.parker@durham.ac.uk

Shige

It is a great privilege for me to speak at the conference in honour of Shigeyasu Kamiya on the occasion of his retirement.

I have known Shige for many years.

These are pictures of us

- At the 2007 conference for Alan Beardon's retirement
- In my home in Durham
- > At the conference Shige organised in Okayama in 1998

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Shimizu's lemma

Lemma (Shimizu 1963) Let T and S be the following matrices in SL(2, \mathbb{R}) $T = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Suppose $c \neq 0$. If the group $\Gamma = \langle T, S \rangle$ is discrete then $|ct| \geq 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Shimizu's lemma

Lemma (Shimizu 1963) Let T and S be the following matrices in SL(2, \mathbb{R}) $T = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Suppose $c \neq 0$. If the group $\Gamma = \langle T, S \rangle$ is discrete then $|ct| \geq 1$.

The proof has three steps.

Step 1

Consider the sequence in Γ defined by $S_0 = S$ and $S_{j+1} = S_j T S_j^{-1}$.

Write $S_j = \begin{pmatrix} a_j & b_j \\ c_j & d_j \end{pmatrix}$. Then S_{j+1} is given by $\begin{pmatrix} a_j & b_j \\ c_j & d_j \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d_j & -b_j \\ -c_j & a_j \end{pmatrix} = \begin{pmatrix} 1 - a_j c_j t & a_j^2 t \\ -c_j^2 t & 1 + a_j c_j t \end{pmatrix}$. In particular $c_{j+1} = -c_j^2 t$

Proof of Shimizu's lemma continued

Step 2

From the sequence $\{S_i\}$ construct a dynamical system:

 $|c_{j+1}t| = |c_jt|^2$ and so $|c_jt| = |c_0t|^{2^j} = |ct|^{2^j}$.

Find a condition that ensures we lie in a finite basin of attraction: If $|ct| = |c_0t| < 1$ then $|c_jt|$, and hence c_j , tends to 0. Moreover, since $c \neq 0$ then $c_j \neq 0$.

Proof of Shimizu's lemma continued

Step 2 From the sequence $\{S_j\}$ construct a dynamical system: $|c_{j+1}t| = |c_jt|^2$ and so $|c_jt| = |c_0t|^{2^j} = |ct|^{2^j}$. Find a condition that ensures we lie in a finite basin of attraction: If $|ct| = |c_0t| < 1$ then $|c_jt|$, and hence c_j , tends to 0. Moreover, since $c \neq 0$ then $c_j \neq 0$.

Step 3 We use $c_jt \longrightarrow 0$ to show S_j tends to T: We have $a_{j+1} - 1 = -a_jc_jt = -(a_j - 1)c_jt - c_jt$, so for $j \ge 1$: $|a_j - 1| \le |a_0 - 1| |c_0t|^{2^j} + j|c_0t|^{2^j}$ Hence a_j tends to 1.

Using our expression for S_{j+1} , this shows S_j tends to T.

Since $c_j \neq 0$ then $S_j \neq T$ and $\Gamma = \langle T, S \rangle$ is not discrete.

Hence if Γ is discrete, we must have $|ct| \ge 1$. \Box

Some hyperbolic geometry

- S(z) is an isometry of the hyperbolic plane $\mathbf{H}^2 = \mathbf{H}_{\mathbb{R}}^2$
- ► A discrete subgroup Γ of SL(2, ℝ) acts properly discontinuously on H²_ℝ.
- The quotient $M = \mathbf{H}_{\mathbb{R}}^2 / \Gamma$ is an orbifold.
- ► The matrix T corresponds to the Möbius transformation T(z) = z + t. This has (Euclidean) translation length ℓ_T = |t|
- ► For u > 0 the horoball H_u of height u at ∞ is $H_u = \{z = x + iy \in \mathbf{H}^2_{\mathbb{R}} : y > u\}$
- A horoball at a point $x \in \mathbb{R}$ is an open disc tangent to \mathbb{R} at x

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Isometric spheres

Let $S(z) = (az + b)/(cz + d) \in PSL(2, \mathbb{R})$ not fixing ∞ So $c \neq 0$. The isometric sphere I(S) of S is the Euclidean semi-circle with centre $S^{-1}(\infty) = -d/c$ and radius $r_s = 1/|c|$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

S sends the outside of I(S) to the inside of $I(S^{-1})$.

Isometric spheres

Let $S(z) = (az + b)/(cz + d) \in PSL(2, \mathbb{R})$ not fixing ∞ So $c \neq 0$. The isometric sphere I(S) of S is the Euclidean semi-circle with centre $S^{-1}(\infty) = -d/c$ and radius $r_s = 1/|c|$

S sends the outside of I(S) to the inside of $I(S^{-1})$.

S sends the horoball H_u of height u centred at ∞ to a horoball $S(H_u)$ of diameter $1/u|c|^2$ at $S(\infty)$. So if $u \ge r_S = 1/|c|$ then H_u and $S(H_u)$ are disjoint.

Geometric interpretation of Shimizu's lemma

Let Γ be a discrete subgroup of $PSL(2, \mathbb{R})$ containing T(z) = z + t where t > 0.

(1) If S is any element of Γ not fixing ∞ then the radius r_S of the isometric sphere of S satisfies $r_S \leq \ell_T$ (Note this is an inequality between two Euclidean quantities) Proof: $r_s = 1/|c|, \ \ell_T = |t|$ and Shimizu says $|ct| \geq 1$.

(2) Horoball H_t of height u = t is precisely invariant under Γ That is, for any $S \in \Gamma$ either $S(H_t) = H_t$ or $S(H_t) \cap H_t = \emptyset$.

On the orbifold $M = \mathbf{H}_{\mathbb{R}}^2 / \Gamma$

 $C = H_t / \Gamma_{\infty}$ is a cusp neighbourhood of hyperbolic area 1.

The modular group

Shimizu's lemma is sharp for the modular group $PSL(2,\mathbb{Z})$ In this case, t = 1 and S(z) = -1/z has $r_S = 1$. There is a cusp neighbourhood C which cannot be enlarged. It has area is 1, which is large compared to the area of $\mathbf{H}^2_{\mathbb{D}}/\mathrm{PSL}(2,\mathbb{Z})$, which is $\pi/3$ n

Generalisations of Shimizu's lemma

- ► Leutbecher 1967 Subgroups of PSL(2, C) = Isom₀(H³_R) containing a translation.
- ► Wielenberg 1977 Subgroups of PO₀(n, 1) = Isom₀(Hⁿ_ℝ) containing a translation.
- Kamiya 1983 Subgroups of PU(n, 1) = Isom₀(Hⁿ_ℂ) or PSp(n, 1) = Isom₀(Hⁿ_ℍ) containing a vertical Heisenberg translation.
- ► Apanasov 1985, Ohtake 1985 Subgroups of Isom(Hⁿ_ℝ) with n ≥ 4 containing a screw parabolic map: there is no uniform bound on radii of isometric spheres.
- ▶ JRP 1992 Subgroups of PU(n, 1) containing a non-vertical Heisenberg translation: there is no uniform bound on radii of isometric spheres.
- ► Waterman 1993 Subgroups of Isom(Hⁿ_R) with n ≥ 4 containing a screw parabolic map: radii of isometric spheres bounded in terms of parabolic translation length at centres.

Jørgensen's inequality

Jørgensen 1976 If $\langle T, S \rangle$ subgroup of $SL(2, \mathbb{C})$ discrete, then elementary or $|tr^2(S) - 4| + |tr[S, T] - 2| \ge 1$ (Same structure of proof as Shimizu's lemma).

Jørgensen's inequality

Jørgensen 1976 If $\langle T, S \rangle$ subgroup of $SL(2, \mathbb{C})$ discrete, then elementary or $|tr^2(S) - 4| + |tr[S, T] - 2| \ge 1$ (Same structure of proof as Shimizu's lemma).

While working on basin of attraction part of this problem Brooks & Matelski 1978/1979 produced

Shimizu's lemma for real hyperbolic space

A parabolic isometry T of $\mathbf{H}_{\mathbb{R}}^{n}$ fixing ∞ acts on \mathbb{R}^{n-1} as T(x) = Ux + t where $U \in O(n-1)$, $t \in \mathbb{R}^{n-1}$ and Ut = t.

Let $N_U = \max\{\|(U - I)x\| : \|x\| = 1\}$ The Euclidean translation length of T at x is $\ell_T(x) = \|T(x) - x\| = \|(U - I)x + t\| = \sqrt{\|(U - I)x\|^2 + \|t\|^2}$

Shimizu's lemma for real hyperbolic space

A parabolic isometry T of $\mathbf{H}_{\mathbb{R}}^{n}$ fixing ∞ acts on \mathbb{R}^{n-1} as T(x) = Ux + t where $U \in O(n-1)$, $t \in \mathbb{R}^{n-1}$ and Ut = t.

Let $N_U = \max\{\|(U - I)x\| : \|x\| = 1\}$ The Euclidean translation length of T at x is $\ell_T(x) = \|T(x) - x\| = \|(U - I)x + t\| = \sqrt{\|(U - I)x\|^2 + \|t\|^2}$

Theorem (Waterman 1993)

Let $\Gamma < \operatorname{Isom}(\mathbf{H}^n_{\mathbb{R}})$ be discrete and contain T(x) = Ux + t. Suppose $N_U < 1/4$ and write $K = \frac{1}{2}(1 + \sqrt{1 - 4N_U})$. Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_T(S^{-1}(\infty))\ell_T(S(\infty))}{\kappa^2}$.

Shimizu's lemma for real hyperbolic space

A parabolic isometry T of $\mathbf{H}_{\mathbb{R}}^{n}$ fixing ∞ acts on \mathbb{R}^{n-1} as T(x) = Ux + t where $U \in O(n-1)$, $t \in \mathbb{R}^{n-1}$ and Ut = t.

Let $N_U = \max\{\|(U - I)x\| : \|x\| = 1\}$ The Euclidean translation length of T at x is $\ell_T(x) = \|T(x) - x\| = \|(U - I)x + t\| = \sqrt{\|(U - I)x\|^2 + \|t\|^2}$

Theorem (Waterman 1993)

Let $\Gamma < \operatorname{Isom}(\mathbf{H}^n_{\mathbb{R}})$ be discrete and contain T(x) = Ux + t. Suppose $N_U < 1/4$ and write $K = \frac{1}{2}(1 + \sqrt{1 - 4N_U})$. Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_T(S^{-1}(\infty))\ell_T(S(\infty))}{K^2}$.

If U = I then N_U = 0 and K = 1.
 Also, ℓ_T(x) = ||t|| and Waterman gives r_S ≤ ||t||
 This is Wielenberg's version of Shimizu's lemma.

Hyperbolic spaces

Let $\mathbb F$ be one of

- the real numbers \mathbb{R} ,
- ▶ the complex numbers ℂ,
- \blacktriangleright the quaternions $\mathbb H$

Let $\mathbb{F}^{n,1}$ be the n+1 dimensional \mathbb{F} -vector space (with scalars in \mathbb{F} acting on the right) equipped with $\langle \cdot, \cdot \rangle$ Hermitian form (bilinear for $\mathbb{R}^{n,1}$) of signature (n,1)Let $V_{-} = \{ z \in \mathbb{F}^{n,1} : \langle z, z \rangle < 0 \}$ and $V_{0} = \{ z \in \mathbb{F}^{n,1} - \{ \mathbf{0} \} : \langle z, z \rangle = 0 \}$ Let $\mathbb{P} : \mathbb{F}^{n,1} - \{ \mathbf{0} \} \longrightarrow \mathbb{FP}^{n}$ be the (right) projection map.

Then $\mathbf{H}_{\mathbb{F}}^{n} = \mathbb{P}V_{-}$ and $\partial \mathbf{H}_{\mathbb{F}}^{n} = \mathbb{P}V_{0}$; metric on $\mathbf{H}_{\mathbb{F}}^{n}$ is given by: $ds^{2} = \frac{-4}{\langle \mathbf{z}, \mathbf{z} \rangle^{2}} \det \begin{pmatrix} \langle \mathbf{z}, \mathbf{z} \rangle & \langle d\mathbf{z}, \mathbf{z} \rangle \\ \langle \mathbf{z}, d\mathbf{z} \rangle & \langle d\mathbf{z}, d\mathbf{z} \rangle \end{pmatrix}$

The hyperbolic spaces are $\mathbf{H}^{n}_{\mathbb{R}}$, $\mathbf{H}^{n}_{\mathbb{C}}$, $\mathbf{H}^{n}_{\mathbb{H}}$ together with $\mathbf{H}^{2}_{\mathbb{O}}$ where \mathbb{O} are the octonions (see Chen & Greenberg 1974).

More about hyperbolic spaces

Let O(n, 1), U(n, 1), Sp(n, 1) be the group preserving $\langle \cdot, \cdot \rangle$ when $\mathbb{F} = \mathbb{R}$, \mathbb{C} , \mathbb{H} respectively (acting on $\mathbb{F}^{n,1}$ on the left). This group acts (projectively) by isometries on $\mathbf{H}_{\mathbb{F}}^{n}$ (For $\mathbb{F} = \mathbb{O}$ there is no vector space $\mathbb{O}^{2,1}$ but there is an analogous isometry group $F_{4(-20)}$ of $\mathbf{H}_{\mathbb{O}}^{2}$. We will not consider this case here.) We pass between matrix groups and isometries without comment.

An isometry S of a hyperbolic space **H** is

- ► loxodromic (or hyperbolic) if it has two fixed points, both on ∂H
- ▶ parabolic if it has a unique fixed point, lying on ∂H
- elliptic if it fixes (at least) one point of H

There are finer classifications of these types. We will mainly be interested in parabolic maps, which are: Either (Heisenberg)-translations or screw parabolic maps.

Shimizu's lemma for other hyperbolic spaces

- ► Kamiya 1983 Subgroups of SU(n, 1) or Sp(n, 1) containing a vertical Heisenberg translation.
- Hersonsky-Paulin 1996 Subgroups of SU(n, 1) containing a non-vertical Heisenberg translation (not given geometrically).
- ► JRP 1997 Subgroups of SU(n, 1) containing a non-vertical Heisenberg translation.
- ► I. Kim & JRP 2003 Subgroups of Sp(n, 1) containing a non-vertical Heisenberg translation.
- ► Jiang & JRP 2003 Subgroups of SU(2,1) containing a screw parabolic map (not given geometrically).
- ▶ D. Kim 2004 Subgroups of Sp(2, 1) containing (certain types of) screw parabolic maps (not given geometrically).
- Kamiya & JRP 2008 Subgroups of SU(2,1) containing a positively oriented screw parabolic map.
- ► Cao & JRP 2014 Subgroups of SU(n, 1) or Sp(n, 1) containing any parabolic map.

Other generalisations

The stable basin theorem

- Basmajian & Miner 1998 Stable basin theorem stronger hypothesis than Shimizu/Jørgensen. Includes version of Shimizu's lemma for SU(2,1)
- Kamiya 2000, Kamiya & JRP 2002 SBT for Heisenberg translations follows from Shimizu's lemma.

Generalisations of Jørgensen's inequality:

- Jiang, Kamiya & JRP 2003 Jørgensen's inequality for subgroups of SU(2,1)
- ► Markham 2003 Jørgensen's inequality for subgroups of PSp(2,1) and (some) subgroups of F₄₍₋₂₀₎
- ▶ D. Kim 2004 Jørgensen's inequality for subgroups of PSp(2,1)
- ► Cao & JRP 2011 Jørgensen's inequality for subgroups of SU(n, 1) or Sp(n, 1).

Heisenberg groups and the boundary of hyperbolic spaces

We can identify

- $\partial \mathbf{H}_{\mathbb{R}}^{n}$ with $\mathbb{R}^{n-1} \cup \{\infty\}$,
- $\partial \mathbf{H}^n_{\mathbb{C}}$ with $\mathfrak{N}_{2n-1} \cup \{\infty\}$,
- $\triangleright \ \partial \mathbf{H}_{\mathbb{H}}^{n} \text{ with } \mathfrak{N}_{4n-1} \cup \{\infty\}.$

 $\mathfrak{N}_{2n-1} = \mathbb{C}^{n-1} \times \mathbb{R}$ is the (2n-1)-dimensional Heisenberg group, and $\mathfrak{N}_{4n-1} = \mathbb{H}^{n-1} \times \mathbb{R}^3 = \mathbb{H}^{n-1} \times \mathfrak{IH}$ is the (4n-1)-dimensional generalised Heisenberg group both with the group law $(\zeta_1, v_1) \cdot (\zeta_2, v_2) = (\zeta_1 + \zeta_2, v_1 + v_2 + 2\mathfrak{I}(\zeta_2^*\zeta_1))$ (where z^* is the conjugate transpose) We will write \mathfrak{N} for both cases

The Cygan metric on \mathfrak{N} is the metric associated to the norm $\|(\zeta, v)\| = (\|\zeta\|^4 + |v|^2)^{1/4}$ It generalises the Euclidean metric on \mathbb{R}^{n-1} for $\mathbf{H}^n_{\mathbb{R}}$ and the square root of the Euclidean metric on \mathbb{R} for $\mathbf{H}^1_{\mathbb{C}} \approx \mathbf{H}^2_{\mathbb{R}}$.

Action of PU(n, 1) and PSp(n, 1) on \mathfrak{N}

We write an element S of PU(n, 1) or PSp(n, 1) and its inverse as

$$S = \begin{pmatrix} a & \gamma^* & b \\ \alpha & A & \beta \\ c & \delta^* & d \end{pmatrix}, \quad S^{-1} = \begin{pmatrix} \overline{d} & \beta^* & \overline{b} \\ \delta & A^* & \gamma \\ \overline{c} & \alpha^* & \overline{a} \end{pmatrix}$$

where $a, b, c, d \in \mathbb{F}$, $\alpha, \beta, \gamma, \delta \in \mathbb{F}^{n-1}$, $A \in U(n-1)$ or Sp(n-1). If c = 0 then S fixes ∞ ; if $c \neq 0$ we define isometric spheres.

The isometric sphere I(S) of S is the Cygan sphere of radius $r_S = 1/|c|^{1/2}$ with centre $S^{-1}(\infty) = (\delta \overline{c}^{-1}/\sqrt{2}, \Im(\overline{d}\overline{c}^{-1})) \in \mathfrak{N}$. S sends the outside of I(S) to the inside of $I(S^{-1})$.

Pictures of Cygan spheres and hemispheres by Anton Lukyanenko.

Heisenberg translations in PU(n, 1) and PSp(n, 1)

The simplest parabolic maps in PU(n, 1) and PSp(n, 1) are Heisenberg translations:

The (generalised) Heisenberg group \mathfrak{N} acts on itself by left translation: $T_{(\tau,t)}: (\zeta, v) \longmapsto (\zeta + \tau, v + t + 2\Im(\zeta^*\tau))$

As a matrix in
$$PU(n, 1)$$
 or $PSp(n, 1)$ it is

$$T_{(\tau,t)} = T = \begin{pmatrix} 1 & -\sqrt{2}\tau^* & -\|\tau\|^2 + t \\ 0 & l & \sqrt{2}\tau \\ 0 & 0 & 1 \end{pmatrix}.$$
Note: t in top right hand entry is pure imagin

Note: *t* in top right hand entry is pure imaginary so is *it* in complex case.

A Heisenberg translation by (0, t) is called a vertical translation and lies in the centre of \mathfrak{N} .

The Cygan translation length of T at $(\zeta, v) \in \mathfrak{N}$ is $\ell_T((\zeta, v)) = (||\tau||^4 + |t + 4\mathfrak{I}(\zeta^*\tau)|^2)^{1/4}$.

Theorem (JRP 1997, Kim-JRP 2003) Let $\Gamma < PU(n, 1)$ or PSp(n, 1) be discrete and contain Heisenberg translation T by (τ, t) . Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_T(S^{-1}(\infty))\ell_T(S(\infty)) + 4\|\tau\|^2$.

▶ When $\tau = 0$ then $\ell_T((\zeta, v)) = |t|^{1/2}$ get $r_5^2 \le \ell_T^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Theorem (JRP 1997, Kim-JRP 2003) Let $\Gamma < PU(n, 1)$ or PSp(n, 1) be discrete and contain Heisenberg translation T by (τ, t) . Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_T(S^{-1}(\infty))\ell_T(S(\infty)) + 4\|\tau\|^2$.

▶ When $\tau = 0$ then $\ell_T((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \le \ell_T^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Structure of proof same as for classical Shimizu:

- Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- Show in finite basin of attraction of dynamical system

▶ Deduce S_j tends to T.

Theorem (JRP 1997, Kim-JRP 2003) Let $\Gamma < PU(n, 1)$ or PSp(n, 1) be discrete and contain Heisenberg translation T by (τ, t) . Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_T(S^{-1}(\infty))\ell_T(S(\infty)) + 4\|\tau\|^2$.

▶ When $\tau = 0$ then $\ell_T((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \le \ell_T^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Structure of proof same as for classical Shimizu:

- Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- Show in finite basin of attraction of dynamical system
- Deduce S_j tends to T.

The variables in the dynamical system are:

$$\begin{split} X_{j} &= \left(\max\{\ell_{\mathcal{T}}(S_{j}^{-1}(\infty)), \ell_{\mathcal{T}}(S_{j}(\infty))\} / r_{S_{j}} \right)^{2}, \quad Y_{j} = \left(\|\tau\| / r_{S_{j}} \right)^{2} \\ \text{They satisfy } X_{j+1} &\leq X_{j}^{2} + 4Y_{j}, \quad Y_{j+1} \leq X_{j}Y_{j} \end{split}$$

Theorem (JRP 1997, Kim-JRP 2003) Let $\Gamma < PU(n, 1)$ or PSp(n, 1) be discrete and contain Heisenberg translation T by (τ, t) . Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \le \ell_T(S^{-1}(\infty))\ell_T(S(\infty)) + 4\|\tau\|^2$.

▶ When $\tau = 0$ then $\ell_T((\zeta, v)) = |t|^{1/2}$ get $r_S^2 \le \ell_T^2 = |t|$ (that is $|ct| \ge 1$), due to Kamiya 1983.

Structure of proof same as for classical Shimizu:

- Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- Show in finite basin of attraction of dynamical system
- ▶ Deduce S_j tends to T.

The variables in the dynamical system are:

 $\begin{aligned} X_j &= \left(\max\{\ell_T(S_j^{-1}(\infty)), \ell_T(S_j(\infty))\}/r_{S_j} \right)^2, \quad Y_j = \left(\|\tau\|/r_{S_j} \right)^2 \\ \text{They satisfy } X_{j+1} &\leq X_j^2 + 4Y_j, \quad Y_{j+1} \leq X_j Y_j \\ \text{If bound on } r_S \text{ is not true then we show } X_j + 4Y_j < 1 \\ \text{and } X_j, Y_j \text{ tend to 0 as } j \to \infty \end{aligned}$

Invariant horoballs

We can give $\mathbf{H}_{\mathbb{F}}^{n}$ the structure $\mathfrak{N} \times \mathbb{R}_{+}$ A horoball H_{u} of height u at ∞ is $\mathfrak{N} \times (u, \infty)$.

- For vertical translations by (0, t) the horoball H_{|t|} is precisely invariant.
- For non-vertical translations by (τ, t) with τ ≠ 0 there is a precisely invariant sub-horospherical region. We will not go into details about these.
- There is a sharp version of Shimizu's lemma for PU(2,1) yielding a cusp neighbourhood of volume 1/4
 This cusp neighbourhood is as maximal for
 the Eisenstein-Picard lattice PU(2,1; Z[^{1+i√3}/₂]) and its sister
 which have covolume π²/27

Positively oriented screw parabolic maps in PU(2, 1) Consider $T = \begin{pmatrix} 1 & 0 & it \\ 0 & e^{i\theta} & 0 \\ 0 & 0 & 1 \end{pmatrix} \in PU(2, 1)$ *T* is positively oriented if $t \sin(\theta) > 0$. *T* acts on \mathfrak{N}_3 as $T : (\zeta, v) \longmapsto (e^{i\theta}\zeta, v + t)$

Its Cygan translation length $\ell_T((\zeta, v))$ at (ζ, v) is: $|2|\zeta|^2(e^{i\theta}-1)+it|^{1/2} = (|\zeta|^4|e^{i\theta}-1|^4+(2|\zeta|^2\sin(\theta)+t)^2)^{1/4}$

We have the following version of Shimizu's lemma for groups with positively oriented screw parabolic maps (cf Waterman's theorem):

Theorem (Kamiya-JRP 2008)

Let $\Gamma < PU(2,1)$ be discrete and contain positively oriented T. Suppose $|e^{i\theta} - 1| < 1/4$ and write $K = \frac{1}{2}(1 + \sqrt{1 - 4|e^{i\theta} - 1|})$. Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_T(S^{-1}(\infty))\ell_T(S(\infty))}{\kappa^2}$.

▶ Note that if $\theta = 0$ we obtain Kamiya's 1983 result.

General parabolic maps in PU(n, 1)

- ► A general parabolic map in PU(n, 1) has the form $T = \begin{pmatrix} 1 & -\sqrt{2}\tau^* & -\|\tau\|^2 + it \\ 0 & U & \sqrt{2}\tau \\ 0 & 0 & 1 \end{pmatrix}$ where $U \in U(n-1)$ with $U\tau = \tau$ (so if n = 2 and $U \neq I$ then $\tau = 0$).
- If $U \neq I$ then this is a screw parabolic map.
- ► T acts on \mathfrak{N}_{2n-1} as $T: (\zeta, v) \longmapsto (U\zeta + \tau, v + t + 2\Im(\zeta^*\tau))$
- ► Its Cygan translation length at (ζ, ν) is $\ell_T((\zeta, \nu)) = (||(U-I)\zeta + \tau||^4 + |t+2\Im((\zeta^* - \tau^*)(U\zeta + \tau))|^2)^{1/4}.$
- ► If U = I then this map is a Heisenberg translation. Action on 𝔑_{2n-1} and Cygan translation length are as before.

General parabolic maps in PSp(n, 1)

Cao-JRP 2014 A general parabolic map in PSp(n, 1) has the form $T = \begin{pmatrix} \mu & -\sqrt{2}\tau^*\mu & (-\|\tau\|^2 + t)\mu \\ 0 & U & \sqrt{2}\tau\mu \\ 0 & 0 & \mu \end{pmatrix}$ where $U \in \text{Sp}(n-1)$ and $\mu \in \mathbb{H}$, $|\mu| = 1$ with $\begin{cases} U\tau = \mu\tau, \ U^*\tau = \overline{\mu}\tau, \ \mu\tau \neq \tau\overline{\mu} & \text{if } \tau \neq 0 \text{ and } \mu \neq \pm 1, \\ U\tau = \tau, \ U^*\tau = \tau & \text{if } \tau \neq 0 \text{ and } \mu = \pm 1, \\ \mu t \neq t\overline{\mu} & \text{if } \tau = 0 \text{ and } \mu \neq \pm 1, \\ t \neq 0 & \text{if } \tau = 0 \text{ and } \mu = \pm 1. \end{cases}$ if $\tau = 0$ and $\mu = \pm 1$.

This acts on \mathfrak{N}_{4n-1} as $\mathcal{T}: (\zeta, v) \longmapsto (U\zeta\overline{\mu} + \tau, \mu v\overline{\mu} + t + 2\Im(\mu\zeta^*\overline{\mu}\tau))$ Its Cygan translation length $\ell_{\mathcal{T}}((\zeta, v))$ is $(\|U\zeta\overline{\mu} - \zeta + \tau\|^4 + |\mu v\overline{\mu} - v + t + 2\Im((\zeta^* - \tau^*)(U\zeta\overline{\mu} + \tau))|^2)^{1/4}.$

Vertical projection

Before discussing the generalised Shimizu's lemma, there is one more ingredient.

- ► Define vertical projection $\Pi : \mathfrak{N}_{2n-1} = \mathbb{C}^{n-1} \times \mathbb{R} \longrightarrow \mathbb{C}^{n-1}$ $\Pi : \mathfrak{N}_{4n-1} = \mathbb{H}^{n-1} \times \mathbb{R}^3 \longrightarrow \mathbb{H}^{n-1}$ by $\Pi : (\zeta, v) \longmapsto \zeta$.
- If *T* is one of the parabolic maps defined above, its vertical projection acts on Cⁿ⁻¹ or ℍⁿ⁻¹ respectively as
 *T*_Π : ζ → Uζμ + τ (where μ = 1 in the complex case)
- ► The Euclidean translation length of the vertical projection of *T* at $\zeta \in \mathbb{F}^{n-1}$ is $\ell_T^{\Pi}(\zeta) = \|U\zeta\overline{\mu} - \zeta + \tau\|$

The generalised Shimizu's lemma

Let \mathcal{T} be a general parabolic map, U, μ as before. Define $N_{U,\mu} = \max\{\|U\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\}$ $N_{\mu} = \max\{\|\mu\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\} = |\Im(\mu)|$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

The generalised Shimizu's lemma

Let \mathcal{T} be a general parabolic map, U, μ as before. Define $N_{U,\mu} = \max\{\|U\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\}$ $N_{\mu} = \max\{\|\mu\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\} = |\Im(\mu)|$

Theorem (Cao-JRP 2014) Let $\Gamma \in PSp(n, 1)$ be discrete and contain parabolic T as above. Suppose $N_{\mu} < 1/4$ and $N_{U,\mu} < (3 - 2\sqrt{2 + N_{\mu}})/2$ Define $K = \frac{1}{2} \left(1 + 2N_{U,\mu} + \sqrt{1 - 12N_{U,\mu} + 4N_{U,\mu}^2 - 4N_{\mu}} \right)$ Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_T(S^{-1}(\infty))\ell_T(S(\infty))}{K} + \frac{4\ell_T^{\Pi}(\Pi S^{-1}(\infty))\ell_T^{\Pi}(\Pi S(\infty))}{K(K - 2N_{U,\mu})}$

The generalised Shimizu's lemma

Let T be a general parabolic map, U, μ as before. Define $N_{U,\mu} = \max\{\|U\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\}$ $N_{\mu} = \max\{\|\mu\zeta\overline{\mu} - \zeta\| : \|\zeta\| = 1\} = |\Im(\mu)|$ Theorem (Cao-JRP 2014) Let $\Gamma \in PSp(n, 1)$ be discrete and contain parabolic T as above. Suppose $N_{\mu} < 1/4$ and $N_{U,\mu} < (3 - 2\sqrt{2 + N_{\mu}})/2$ Define $K = \frac{1}{2}(1 + 2N_{U,\mu} + \sqrt{1 - 12N_{U,\mu} + 4N_{U,\mu}^2 - 4N_{\mu}})$

Let $S \in \Gamma$ not fixing ∞ have isometric sphere of radius r_S . Then $r_S^2 \leq \frac{\ell_T(S^{-1}(\infty))\ell_T(S(\infty))}{K} + \frac{4\ell_T^{\Pi}(\Pi S^{-1}(\infty))\ell_T^{\Pi}(\Pi S(\infty))}{K(K-2N_{U,\mu})}$

- When $\mu = 1$ (including case of PU(n, 1)) hypotheses simplify: $N_U = N_{U,1} < (\sqrt{2} - 1)^2/2$ and $K = \frac{1}{2} \left(1 + 2N_U + \sqrt{1 - 12N_U + 4N_U^2} \right)$ The conclusion remains the same.
- When U = I, $\mu = 1$ get version for Heisenberg translations.

Sketch of the proof when $U \neq I$ (so $N_{U,\mu} \neq 0$)

- Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- Show in finite basin of attraction of dynamical system

• Deduce S_j tends to T.

Sketch of the proof when $U \neq I$ (so $N_{U,\mu} \neq 0$)

- Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- Show in finite basin of attraction of dynamical system
- ▶ Deduce S_j tends to T.

The variables in the dynamical system are:

$$\begin{split} X_{j} &= \left(\max\{\ell_{T}(S_{j}^{-1}(\infty)), \ell_{T}(S_{j}(\infty))\} / r_{S_{j}} \right)^{2}, \\ Y_{j} &= \left(\max\{\ell_{T}^{\Pi}(\Pi S_{j}^{-1}(\infty)), \ell_{T}^{\Pi}(\Pi S_{j}(\infty))\} / r_{S_{j}} \right)^{2} \\ \text{They satisfy recursion inequalities:} \\ X_{j+1} &\leq X_{j}^{2} + 4Y_{j} + 2N_{U,\mu} + N_{\mu}, \quad Y_{j+1} \leq X_{j}Y_{j} + 2N_{U,\mu}Y_{j} + N_{U,\mu}^{2} \end{split}$$

Sketch of the proof when $U \neq I$ (so $N_{U,\mu} \neq 0$)

- Consider the sequence $S_0 = S$, $S_{j+1} = S_j T S_j^{-1}$
- Show in finite basin of attraction of dynamical system
- ▶ Deduce S_j tends to T.

The variables in the dynamical system are:

$$\begin{split} X_{j} &= \left(\max\{\ell_{T}(S_{j}^{-1}(\infty)), \ell_{T}(S_{j}(\infty))\} / r_{S_{j}} \right)^{2}, \\ Y_{j} &= \left(\max\{\ell_{T}^{\Pi}(\Pi S_{j}^{-1}(\infty)), \ell_{T}^{\Pi}(\Pi S_{j}(\infty))\} / r_{S_{j}} \right)^{2} \\ \text{They satisfy recursion inequalities:} \\ X_{j+1} &\leq X_{j}^{2} + 4Y_{j} + 2N_{U,\mu} + N_{\mu}, \quad Y_{j+1} \leq X_{j}Y_{j} + 2N_{U,\mu}Y_{j} + N_{U,\mu}^{2} \end{split}$$

If the bound on r_S in the theorem is not true then:

- $X_j + 4Y_j/(K 2N_{U,\mu}) < K$
- ► for large enough j we have $X_j < K - 2N_{U,\mu}$ and $Y_j < (K - 2N_{U,\mu})N_{U,\mu}/2$
- For all ε > 0 there exists J_ε so for all j ≥ J_ε: X_j < 1 − K + ε and Y_j < (1 − K)N_{U,µ}/2 + ε

Where do we go from here?

- ► For screw parabolic maps T where U has infinite order, the asymptotic growth (in terms of distance from axis) of bounds on r_S are worse than in examples.
- Erlandsson & Zakeri: In PO(4,1) use same bounds for carefully chosen powers of T to improve asymptotics.
 'Carefully chosen' means use Diophantine approximation of rotation angle.

- ► Erlandsson-Zakeri's idea also works in PU(2, 1).
- Try to generalise these results to F₄₍₋₂₀₎